Byzantine Fault-Tolerant Distributed Set Intersection with Redundancy and its Relationship with Byzantine Optimization

Shuo Liu & Nitin Vaidya

Georgetown University

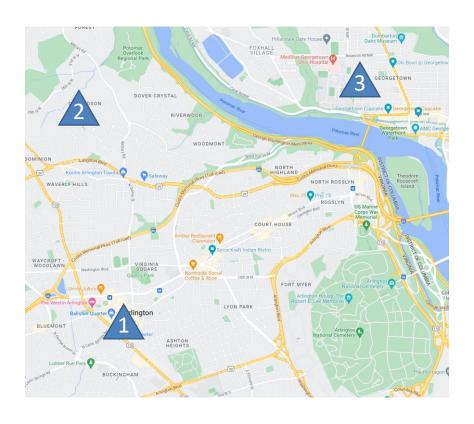
Distributed optimization

- n agents
- each agent i has $Q_i(x)$

$$\arg\min_{x} \sum_{i} Q_{i}(x)$$

 Many applications: machine learning, distributed sensing, ...

Distributed optimization

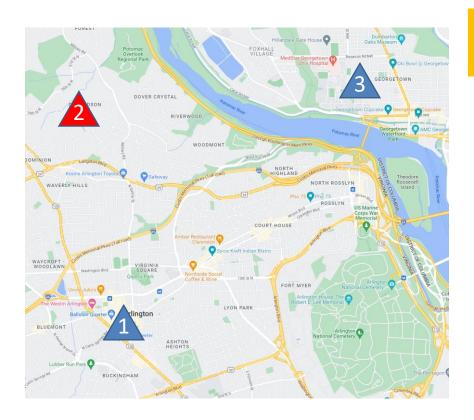


Cost examples

Money, fuel, energy...

Minimize aggregate cost

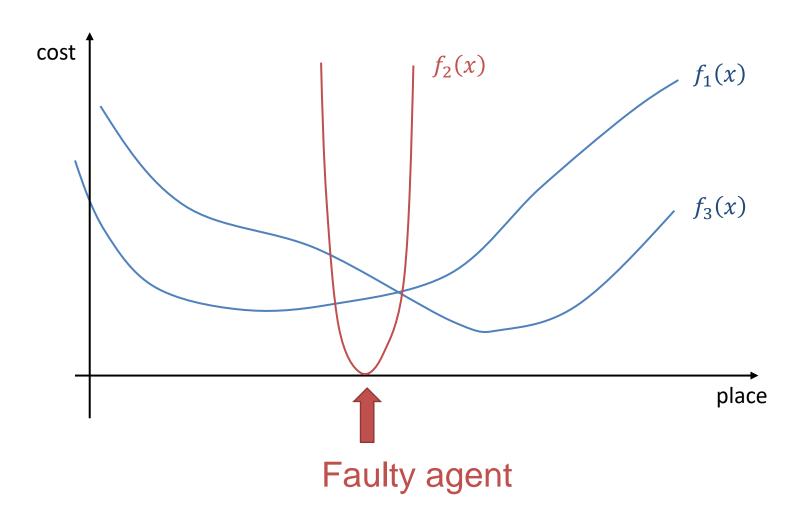
Distributed optimization



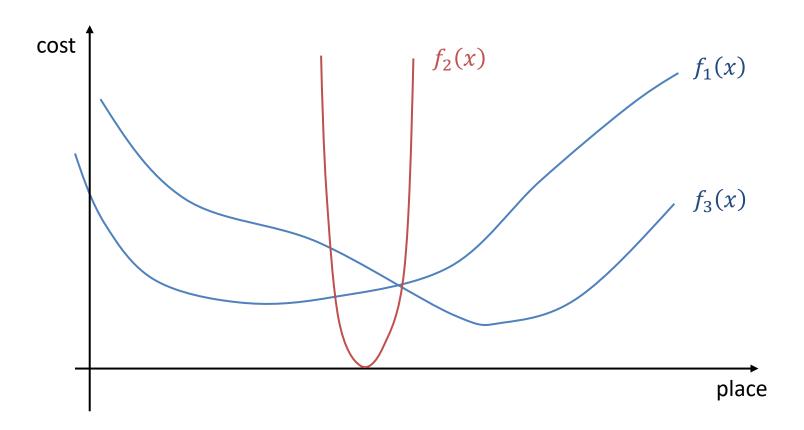
Adversarial agents

Minimize aggregate cost

Impact of Byzantine agents



Impact of Byzantine agents



Faulty agents can tamper the computation

Byzantine optimization

• $\arg\min\sum_{\text{all}}Q_i(x)$ not useful

Ideal goal

$$\arg\min \sum_{\text{honest } i} Q_i(x)$$

Exact Byzantine optimization

There exist algorithms, that can solve

$$\arg\min \sum_{\text{honest } i} f_i(x)$$

exactly with redundancy in cost functions

Exact Byzantine optimization

• With sufficient **redundancy**, arg min $\sum_{\text{honest } i} f_i(x)$ can be solved exactly

Exact Byzantine optimization

• With sufficient **redundancy**, arg min $\sum_{\text{honest } i} f_i(x)$ can be solved exactly

2*f*-redundancy

Aggregate of every n-f functions has the same minimum set as aggregate of every n-2f functions

2f-redundancy

Aggregate of all n functions has the same minimum set as aggregate of every n-2f functions

$$X_1 = \arg\min \sum_{i=3}^{7} f_i(x)$$

$$X_2 = \arg\min \sum_{i=1}^5 f_i(x)$$

$$X = \arg\min \sum_{i=1}^{7} f_i(x)$$

$$n = 7$$

$$f = 1$$

$$X = X_1 = X_2 = \cdots$$

2f-redundancy

Aggregate of all n functions has the same minimum set as aggregate of every n-2f functions

2f-redundancy \Rightarrow Exact fault-tolerance

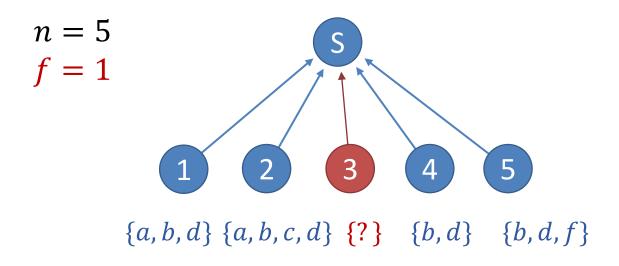
 $\arg \min \sum_{\text{honest } i} Q_i(x)$ can be computed

Byzantine Optimization >> Byzantine Set Intersection

Each agent i has an input set X_i

Up to f agents may be Byzantine

• Output $\bigcap_{\text{honest } i} X_i$



$$n = 5$$
 $f = 1$

$$\{a, b, d\} \{a, b, c, d\} \{?\} \{b, d\} \{b, d, f\}$$

$$X_3 = \{a, b\} \qquad \bigcap_{\text{all } i} X_i = \{b\}$$

$$X_3 = \{a, e\}$$
 $\bigcap_{\text{all } i} X_i = \emptyset$

$$n = 5$$
 $f = 1$

$$\{a, b, d\} \{a, b, c, d\} \{?\} \{b, d\} \{b, d, f\}$$

$$\bigcap_{\text{honest } i} X_i = \{b, d\}$$

$$X_3 = \{a, b\} \qquad \bigcap_{\text{all } i} X_i = \{b\}$$

$$X_3 = \{a, e\}$$
 $\bigcap_{\text{all } i} X_i = \emptyset$

$$n = 5$$
 $f = 1$

$$\{a, b, d\} \{a, b, c, d\} \{?\} \{b, d\} \{b, d, f\}$$

$$\bigcap_{X_i = \{b, d\}} X_i = \{b, d\} \qquad X_3 = \{a, b\} \qquad \bigcap_{\text{all } i} X_i = \{b\}$$
honest i
$$X_3 = \{a, e\} \qquad \bigcap_{\text{all } i} X_i = \emptyset$$

Faulty agents can make intersection smaller

$$n = 5$$
 $f = 1$

$$\{a, b, d\} \{a, b, c, d\} \{?\} \{b, d\} \{b, d, f\}$$

$$\bigcap_{\text{honest } i} X_i = \{b, d\}$$

$$X_3 = \{a, b\} \qquad \bigcap_{\text{all } i} X_i = \{b\}$$

$$X_3 = \{a, e\}$$
 $\bigcap_{\text{all } i} X_i = \emptyset$

Make each value redundant enough so that we can avoid removing it

Optimization -> Set Intersection

2*f*-redundancy

[Gupta & Vaidya, 2020]

Aggregate of all n functions has the same minimum set as aggregate of every n-2f functions

Optimization -> Set Intersection

2*f*-redundancy

[Gupta & Vaidya, 2020]

Aggregate of all n functions has the same minimum set as aggregate of every n-2f functions

Equivalent to 2f-set-redundancy

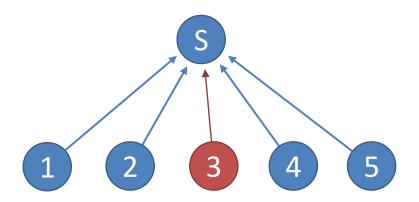
The **intersections** of sets $\bigcap_{i \in S} X_i$ of every $\geq n - 2f$ agents S are the same as $\bigcap_{i \in [n]} X_i$ of all n agents

2*f*-set-redundancy

The intersections of sets $\bigcap_{i \in S} X_i$ of every $\geq n - 2f$ agents S are the same as $\bigcap_{i \in [n]} X_i$ of all n agents

Server-based system

2*f*-set-redundancy is sufficient



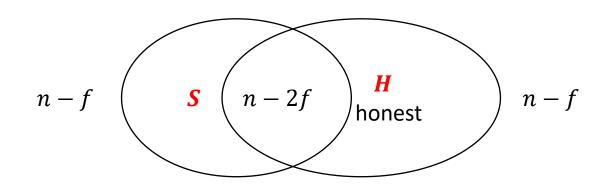
Server-based algorithm with 2*f*-set-redundancy

Find a subset of n - f agents S such that
 the intersection of the input sets of any n - 2f agents in S is the same

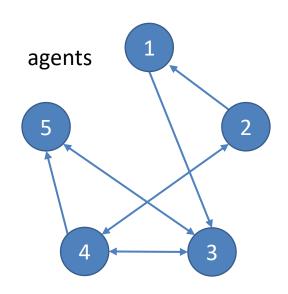
Output the intersection of the input sets of agents in set S

Server-based algorithm with 2*f*-set-redundancy

- Find a subset of n f agents S such that the intersection of the input sets of any n - 2f agents in S is the same
- Output the intersection of the input sets of agents in set S



Decentralized system



 Relationships between communication graphs and redundancy

Decentralized system

Find relationship between communication graphs and redundancy

- Given 2*f*-set-redundancy, what communication graph?

- Given communication graph, what redundancy?

Two types of algorithms

Constrained algorithms

Unconstrained algorithms

Constrained algorithms

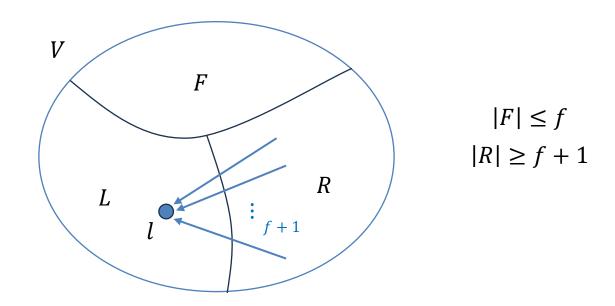
Iterative algorithms

Each agent can only maintain a local set

 Each iteration can only send, receive, and update the local set

Necessary condition with 2*f*-set-redundancy

For node partition L, R, F of V with $|F| \le f$ if $|R| \ge f + 1$, there exists $l \in L$ with $\ge f + 1$ incoming neighbors in R



Necessary condition with 2*f*-set-redundancy

The necessary condition can also be derived using previous results for *certified propagation*

[Tseng et al., 2015]

Sufficiency: Constrained algorithm with

2f-set-redundancy

 In each iteration, agents send their sets to outgoing neighbors

Receive sets from neighbors

• Remove y local set if at least f+1 sets don't include y

Sufficiency: Constrained algorithm with 2*f*-set-redundancy

 In each iteration, agents send their sets to outgoing neighbors

This algorithm only practical for **finite** sets

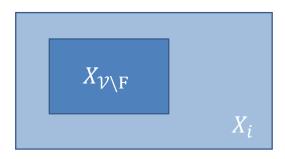
Remove y local set if at least f + 1 sets don't include y

Algorithm for a special case

- Input sets X_i 's are closed hyperrectangles
- X_i can be represented by two points

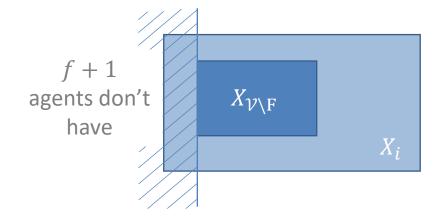
Algorithm for a special case

• $X_{V \setminus F}$ is also closed hyperrectangle



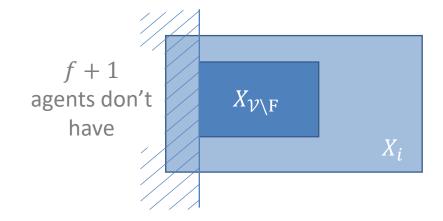
Algorithm for a special case

- $X_{V \setminus F}$ is also closed hyperrectangle
- 2f-set-redundancy implies $\geq f+1$ honest agents don't have points outside each surface of $X_{\mathcal{V}\setminus F}$



Algorithm for a special case

- $X_{V \setminus F}$ is also closed hyperrectangle
- 2f-set-redundancy implies $\geq f+1$ honest agents don't have points outside each surface of $X_{\mathcal{V}\setminus F}$
- Each agent that has points in this region can remove them in finite iterations



Constraints on the sets can be exploited to improve efficiency

Byzantine set intersection Byzantine optimization

Set intersection → optimization

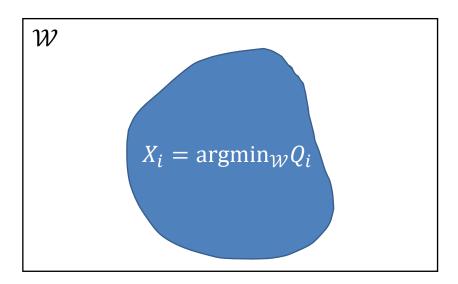
In a decentralized system, conditions for **Byzantine set intersection** are also

- Sufficient for Byzantine optimization
- Necessary when assuming unique minimum point

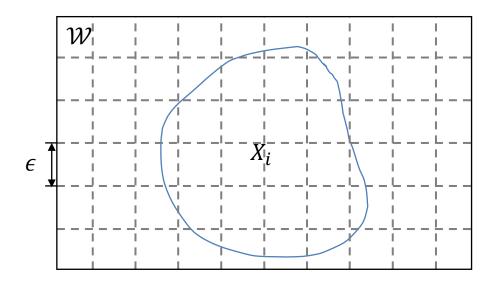
Also need to address infinite sets

- Find points on ϵ -grid with gradients $\leq \mathcal{O}(\sqrt{d}\epsilon)$ in \mathcal{W}
- Byzantine set intersection on sampled points
- Output is $\mathcal{O}(\epsilon)$ -bounded to true minimum

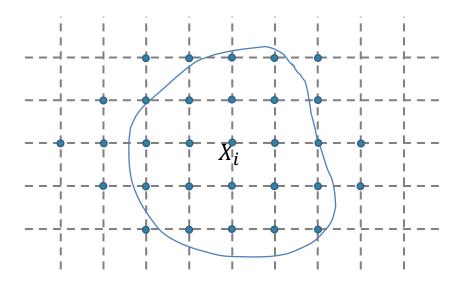
- Find points on ϵ -grid with gradients $\leq \mathcal{O}(\sqrt{d}\epsilon)$ in \mathcal{W}
- Byzantine set intersection on sampled points
- Output is $\mathcal{O}(\epsilon)$ -bounded to true minimum



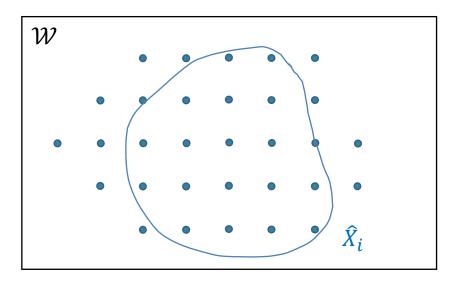
- Find points on ϵ -grid with gradients $\leq \mathcal{O}(\sqrt{d}\epsilon)$ in \mathcal{W}
- Byzantine set intersection on sampled points
- Output is $\mathcal{O}(\epsilon)$ -bounded to true minimum



- Find points on ϵ -grid with gradients $\leq \mathcal{O}(\sqrt{d}\epsilon)$ in \mathcal{W}
- Byzantine set intersection on sampled points
- Output is $\mathcal{O}(\epsilon)$ -bounded to true minimum



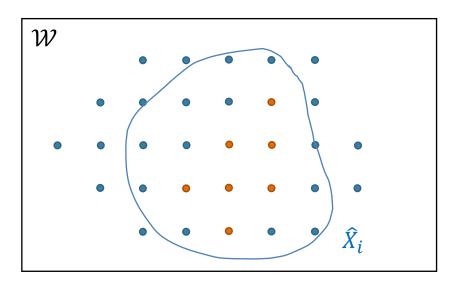
- Find points on ϵ -grid with gradients $\leq \mathcal{O}(\sqrt{d}\epsilon)$ in \mathcal{W}
- Byzantine set intersection on sampled points
- Output is $\mathcal{O}(\epsilon)$ -bounded to true minimum



Bounded gradients

Finite points in \hat{X}_i

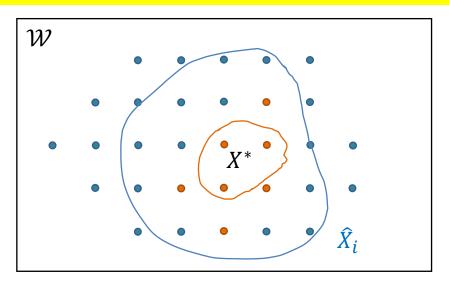
- Find points on ϵ -grid with gradients $\leq \mathcal{O}(\sqrt{d}\epsilon)$ in \mathcal{W}
- Byzantine set intersection on sampled points
- Output is $\mathcal{O}(\epsilon)$ -bounded to true minimum



Bounded gradients

Finite points in \hat{X}_i

- Find points on ϵ -grid with gradients $\leq \mathcal{O}(\sqrt{d}\epsilon)$ in \mathcal{W}
- Byzantine set intersection on sampled points
- Output is $\mathcal{O}(\epsilon)$ -bounded to true minimum assuming Lipschitz gradients and strongly convex aggregate functions



Bounded gradients

Finite points in \hat{X}_i

Summary

- Byzantine set intersection
 - Necessary and sufficient conditions

- Set intersection → Byzantine optimization
 - Algorithm using grid sampling