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Optimization

* Finding the least cost solution
* Find arg min f(x) x €X

* Many applications: ML, linear programming ...
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Distributed optimization

* n agents, each agent i has f;(x)

* Find arg min ), f; (x)



Distributed optimization

* n agent, each agent i has f;(x)
* Find arg min ), f; (x)

* Without sending the whole f;’s
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Distributed optimization
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Application to machine learning

* Each agent has a local dataset
* Agent’s cost function: Loss corresponding to its dataset

* Goal: Minimize the aggregate cost =2 train model
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Distributed optimization

e Two common architectures

server

agents

server-based decentralized

 We focus on server-based architecture



Resilient distributed optimization

* Issues happen in practice
- Faulty agents

- Slow agents (stragglers)



Faulty agents



Fault models

* Crash failures

* Byzantine model



Fault models

* Crash failures

* Byzantine model
- Software errors

- Adversarial attacks



Byzantine model

* Make no assumption on agent behavior

* Cap the number of faulty agents

An algorithm that
tolerates f faulty agents



Impact of faulty agents
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Impact of faulty agents
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Impact of faulty agents
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Impact of faulty agents

> 2 A

f3(x)

I plaée

“I only want us to meet there”



Impact of faulty agents

> 20 A

f3(x)

place

One faulty agent can disrupt the system



Impact of faulty agents

* Solving arg min );; f; (x) is not useful

- Faulty agents can send adversarial information



Impact of faulty agents

* Solving arg min );; f; (x) is not useful

- Faulty agents can send adversarial information

* What should be the goal of fault-tolerant
optimization?



Fault-tolerance goal

* Minimize cost over only honest agents

* Find arg min ), esr i fi (X)

1



arg min Zhonest l fl (x)

* Not achievable in general

* When can we achieve it exactly?
=» Exact fault-tolerance

* When can we achieve it approximately?
=>» Approximate fault-tolerance
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Exact fault-tolerance
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Exact fault-tolerance

* OQutput arg min )., nest; fi(X)

* Impossible without redundancy in cost functions



Redundancy

* Correlations among cost functions

* Common in practice
- Observing the same object
- Similarity between datasets

- Correlation among data points



Exact fault-tolerance

* OQutput arg min )., nest; fi(X)

* What type of redundancy required for
exact fault-tolerance?
[Gupta & Vaidya, 2020]
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Zf'red U nda ncy |Gupta & Vaidya, 2020]

Aggregate of every n — 2f functions has the same
minimum set

x, = argmin 7_, f,(x)
a4 - N
g J
'

x; = argmin Y7_, f; (x) X1 = X, = arg min ) (5 functions)

n=7




Zf‘rEd U ﬂda ﬂcy |Gupta & Vaidya, 2020]

Aggregate of every n — 2f functions has the same
minimum set

2f-redundancy < Exact fault-tolerance



2f-redundancy

 Strong condition, but not impossible

- Example: replicated datasets



2f-redundancy

 Strong condition, but not impossible

- Example: replicated datasets
* Difficult to satisfy in general

* Can we define a weaker goal?



Approximate
fault-tolerance



Approximate fault-tolerance

* Need a measure for approximation

» We define (f, €)-resilience



(f, €)-resilience

Algorithm output within € of minimum for aggregate
of every n — f honest functions, in presence of f
Byzantine agents

distance [ output, argmin z filx) |\ <€

honest

n-f




(f, €)-resilience

distance [ output, argmin z filx)\<e

honest

n—f

e —error margin of the algorithm

> Xqr = arg min z filx) H is set of
iEH n — f honest
agents

Output within



Approximate fault-tolerance

* (f, e)-resilience describes an algorithm
* Goal: Achieve (f, €)-resilience

* This requires adequate redundancy in
cost functions



(2f, €)-redundancy

Aggregate of any n — f cost functions and its
subset of size = n — 2f have minimizers within €
of each other

distance (arg min 2 fi(x),arg min 2 ﬁ-(x)) <e€

honest >n—-2f
n—f subset
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distance [ arg min Z fi(x),arg min z filx)\<e
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n—f subset

€ —how redundant the costs functions are
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(2f, €)-redundancy

distance [ arg min z fi(x),arg min z filx)\<e

honest >n—2f
n—f subset

€ —how redundant the costs functions are

>Xqr = arg minz fi (x)
iEH

Both x4, and

minimizers of

n — 2f subsets

Every > n — 2f
> subset minimizes

within this range
(2f, €)-redundancy 2f-redundancy

(e =0)




(2f, €)-redundancy

* (2f, €)-redundancy describes cost functions

* Can we achieve resilience with (2f, €)-redundancy?



Theoretical results



Necessity

(f, €)-resilience can be achieved only if
cost functions satisfy (2f, €)-redundancy
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Necessity

(f, €)-resilience can be achieved only if
cost functions satisfy (2f, €)-redundancy

Sufficiency

If the cost functions satisfy (2f, €)-redundancy,
(f, 2¢e)-resilience can be achieved

‘ B
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Necessity

(f, €)-resilience can be achieved only if
cost functions satisfy (2f, €)-redundancy

Sufficiency

If the cost functions satisfy (2f, €)-redundancy,
(f, 2¢e)-resilience can be achieved

> Necessity
“can’t achieve without”

Sufficiency
“can achieve with”




Approximate fault-tolerance

* Result: (f, 0(6))-resilience is achievable with
(2f, €)-redundancy, and not achievable without
(In theory)

* |s there any practical solution?



Fault-tolerant algorithm



Distributed gradient descent

* Server maintains estimate x*

° In each iteration t



Distributed gradient descent

 Server maintains estimate x!

° In each iteration t

- Server broadcasts current estimate xt

SN\
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Distributed gradient descent

 Server maintains estimate x!

* In each iteration t
- Server broadcasts current estimate x*¢
Agents send back gradients gf
- Server collects the gradients and makes an update by

, ytt1
t+1 — ot
X=X —U'Zgi

i



Distributed gradient descent

 Server maintains estimate x!

° I[n each iteration t
- Server broadcasts current estimate x*t
Agents send back gradients gf

- Server collects the gradients and makes an update by

t+1 _ ..t t
xt*t=xt—n- E gi
[

e Fails with faults



Fault-tolerant algorithm

* Distributed gradients descent with filters

° In each iteration t
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Fault-tolerant algorithm

* Distributed gradients descent with filters

° I[n each iteration t
- Server broadcasts current estimate x*t
Agents send back gradients or faulty vectors gt

- Server collects and filters the vectors, and makes an
update
xt*tl = xt — - GradFil(g))



Gradient filters

* Also called gradient aggregation rules
* Mitigate faulty vectors

* Many designs

Krum [Blanchard et al., 2017]

Coordinate-wise methods [vinetal, 2018]

Geometric median, median of means, ...

Comparative gradient elimination [Gupta & vaidya, 2019]

[Chen et al., 2017]



Gradient filters

* Comparative gradient elimination
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S
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Gradient filters

* Comparative gradient elimination




Gradient filters

* Comparative gradient elimination 7; Z

NN 4

 Coordinate-wise trimmed mean

1]45/213/5/6



Gradient filters

* Comparative gradient elimination '; Z

NN 4

* Coordinate-wise trimmed mean

NOEDEE0 = NOCEEEE



Gradient filters

* Comparative gradient elimination '; Z

NN 4

* Coordinate-wise trimmed mean

BOBEEE0 — NOENEEE = O



Performance

With (2f, €)-redundancy, the algorithm is
(f, O(e))-resilient

- Error margin decided by gradient filter

- Gradient elimination requires f < n/3

- Trimmed mean’s margin depends on parameter vector size

* Trade-off between complexity and error margin



Stragglers +
Byzantine agents



Stragglers

* Stragglers are slow agents
e Stragglers delay synchronous algorithm

e Solution

- Don’t wait for slow agents

- Exploit redundancy



Algorithm: (f, r; €)-resilient

Algorithm output within € of minimum for
aggregate of every n — f honest functions
in presence of f Byzantine agents and 7 stragglers

> xqp = arg minz fi (x)

IEH

Output within



Costs: (f,r; €)-redundancy

Aggregate of any n — f cost functions and its
subset of size = n — 2/ — r have minimizers
within € of each other

Every>n—2f —r
> subset minimizes
within this range

(f,r; €)-redundancy



Resilient distributed optimization

* Can show similar necessity for (f, r; €)-redundancy

* Can show (f, r; 0(6))-resilience for DGD + filter



Experiments

f: faulty agents
r: stragglers

* MINIST on LeNet — Label-flipping faults

*n =20, f = 3, various 1’s

I— fault-free synchronous synchronous — r=1 — r=3 —— r=5 — r=10

~
n
1

8]
o
1

accuracy (%)
N
v

0 200 400 600 800 1000
iteration t



Summary

* Defined (f, €)-resilience and (2f, €)-redundancy
e Obtained necessary and sufficient conditions
e Algorithm with gradient filters

* Extended to stragglers



Thank you



Thank you

Questions



Presented papers

* Nirupam Gupta and Nitin H. Vaidya. Fault-Tolerance in Distributed
Optimization: The Case of Redundancy. (PODC 2020)

e Shuo Liu, Nirupam Gupta, and Nitin H. Vaidya. Approximate Byzantine
Fault-Tolerance in Distributed Optimization. (PODC 2021)

* Shuo Liu, Nirupam Gupta, and Nitin H Vaidya. Impact of Redundancy on
Resilience in Distributed Optimization and Learning. (ICDCN 2023)



