
Approximate Byzantine Fault-Tolerance
in Distributed Optimization

Shuo Liu

sl1539@georgetown.edu

Georgetown University

Washington DC, USA

Nirupam Gupta

nirupam.gupta@epfl.ch

Ecole Polytechnique Fédérale de

Lausanne (EPFL)

Lausanne, Switzerland

Nitin H. Vaidya

nitin.vaidya@georgetown.edu

Georgetown University

Washington DC, USA

ABSTRACT

This paper considers the problem of Byzantine fault-tolerance in dis-

tributed multi-agent optimization. In this problem, each agent has a

local cost function, and in the fault-free case, the goal is to design a

distributed algorithm that allows all the agents to find a minimum

point of all the agents’ aggregate cost function. We consider a sce-

nario where some agents might be Byzantine faulty that renders the

original goal of computing a minimum point of all the agents’ ag-

gregate cost vacuous. A more reasonable objective for an algorithm

in this scenario is to allow all the non-faulty agents to compute

the minimum point of only the non-faulty agents’ aggregate cost.

Prior work [24] shows that if there are up to 𝑓 (out of 𝑛) Byzantine

agents then a minimum point of the non-faulty agents’ aggregate

cost can be computed exactly if and only if the non-faulty agents’

costs satisfy a certain redundancy property called 2𝑓 -redundancy.
However, 2𝑓 -redundancy is an ideal property that can be satisfied

only in systems free from noise or uncertainties, which can make

the goal of exact fault-tolerance unachievable in some applications.

Thus, we introduce the notion of (𝑓 , 𝜖)-resilience, a generaliza-

tion of exact fault-tolerance wherein the objective is to find an

approximate minimum point of the non-faulty aggregate cost, with

𝜖 accuracy. This approximate fault-tolerance can be achieved under

a weaker condition that is easier to satisfy in practice, compared

to 2𝑓 -redundancy. We obtain necessary and sufficient conditions

for achieving (𝑓 , 𝜖)-resilience characterizing the correlation be-

tween relaxation in redundancy and approximation in resilience. In

case when the agents’ cost functions are differentiable, we obtain

conditions for (𝑓 , 𝜖)-resilience of the distributed gradient-descent

method when equipped with robust gradient aggregation; such as

comparative gradient elimination or coordinate-wise trimmed mean.

CCS CONCEPTS

• Computing methodologies→ Distributed algorithms.

KEYWORDS

Distributed optimization; Approximate fault-tolerance; Distributed

gradient-descent

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC ’21, July 26–30, 2021, Virtual Event, Italy
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8548-0/21/07. . . $15.00

https://doi.org/10.1145/3465084.3467902

ACM Reference Format:

Shuo Liu, Nirupam Gupta, and Nitin H. Vaidya. 2021. Approximate Byzan-

tine Fault-Tolerance in Distributed Optimization. In Proceedings of the
2021 ACM Symposium on Principles of Distributed Computing (PODC ’21),
July 26–30, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3465084.3467902

1 INTRODUCTION

The problem of distributed optimization in multi-agent systems

has gained significant attention in recent years [8, 17, 33]. In this

problem, each agent has a local cost function and, when the agents

are fault-free, the goal is to design algorithms that allow the agents

to collectively minimize the aggregate of their cost functions. To be

precise, suppose that there are 𝑛 agents in the system and let𝑄𝑖 (𝑥)
denote the local cost function of agent 𝑖 , where 𝑥 is a 𝑑-dimensional

vector of real values, i.e., 𝑥 ∈ R𝑑 . A traditional distributed optimiza-

tion algorithm outputs a global minimum 𝑥∗ such that

𝑥∗ ∈ arg min

𝑥 ∈R𝑑

𝑛∑
𝑖=1

𝑄𝑖 (𝑥) . (1)

As a simple example, 𝑄𝑖 (𝑥) may denote the cost for an agent 𝑖

(which may be a robot or a person) to travel to location 𝑥 from

their current location, and 𝑥∗ is a location that minimizes the total

cost of meeting for all the agents. Such multi-agent optimization

is of interest in many practical applications, including distributed

machine learning [8], swarm robotics [38], and distributed sens-

ing [37].

We consider the distributed optimization problem in the pres-

ence of up to 𝑓 Byzantine faulty agents, originally introduced by

Su and Vaidya [43]. The Byzantine faulty agents may behave arbi-

trarily [28]. In particular, the non-faulty agents may share arbitrary

incorrect and inconsistent information in order to bias the output

of a distributed optimization algorithm. For example, consider an

application of multi-agent optimization in the case of distributed

sensing where the agents (or sensors) observe a common object in
order to collectively identify the object. However, the faulty agents

may send arbitrary observations concocted to prevent the non-

faulty agents from making the correct identification [12, 14, 35, 44].

Similarly, in the case of distributed learning, which is another ap-

plication of distributed optimization, the faulty agents may send

incorrect information based on mislabelled or arbitrary concocted

data points to prevent the non-faulty agents from learning a good
classifier [1, 3, 6, 10, 11, 13, 23, 46].

https://doi.org/10.1145/3465084.3467902
https://doi.org/10.1145/3465084.3467902

1.1 Background: Exact Fault-Tolerance

In the exact fault-tolerance problem, the goal is to design a dis-

tributed algorithm that allows all the non-faulty agents to com-

pute a minimum point of the aggregate cost of only the non-faulty

agents [24]. Specifically, suppose that in a given execution, set B
with |B| ≤ 𝑓 is the set of Byzantine agents, where notation |·|
denotes the set cardinality, and H = {1, . . . , 𝑛} \ B denotes the set

of non-faulty (i.e., honest) agents. Then, a distributed optimization

algorithm has exact fault-tolerance if it outputs a point 𝑥∗H such

that

𝑥∗H ∈ arg min

𝑥 ∈R𝑑

∑
𝑖∈H

𝑄𝑖 (𝑥) . (2)

However, since the identity of the Byzantine agents is a priori un-

known, in general, exact fault-tolerance is unachievable [43]. Specif-

ically, as shown in [24, 25], exact fault-tolerance can be achieved

if and only if the agents’ cost functions satisfy the 2𝑓 -redundancy
property defined below.

Definition 1 (2𝑓 -redundancy). The agents’ cost functions are
said to have 2𝑓 -redundancy property if and only if for every pair of
subsets 𝑆, 𝑆 ⊆ {1, . . . , 𝑛} with 𝑆 ⊆ 𝑆 , |𝑆 | = 𝑛 − 𝑓 , and

���𝑆 ��� ≥ 𝑛 − 2𝑓 ,

arg min

𝑥 ∈R𝑑

∑
𝑖∈𝑆

𝑄𝑖 (𝑥) = arg min

𝑥 ∈R𝑑

∑
𝑖∈𝑆

𝑄𝑖 (𝑥) .

In principle, the 2𝑓 -redundancy property can be realized by de-

sign for many applications of multi-agent distributed optimization

including distributed sensing and distributed learning (see [22, 24]).

However, practical realization of 2𝑓 -redundancy can be difficult

in the presence of noise in the real-world systems. Therefore, we

propose a pragmatic generalization of exact fault-tolerance, namely

(𝑓 , 𝜖)-resilience.

1.2 (𝑓 , 𝜖)-Resilience: A Relaxation of Exact

Fault-Tolerance

Intuitively, the proposed notion of (𝑓 , 𝜖)-resilience requires an algo-

rithm to output approximation of a minimum point of the aggregate

of the cost functions of sufficiently large subsets of non-faulty

agents. We define (𝑓 , 𝜖)-resilience below, where 𝜖 ∈ R≥0 is the

measure of approximation and ∥·∥ denotes the Euclidean norm.

The Euclidean distance between a point 𝑥 and a non-empty set 𝑋

in space R𝑑 is denoted by dist (𝑥, 𝑋), and is defined as

dist (𝑥, 𝑋) = inf

𝑦∈𝑋
∥𝑥 − 𝑦∥ . (3)

Definition 2 ((𝑓 , 𝜖)-resilience). A distributed optimiza-
tion algorithm is said to be (𝑓 , 𝜖)-resilient if it outputs a point 𝑥 ∈ R𝑑
such that for every subset 𝑆 of non-faulty agents with |𝑆 | = 𝑛 − 𝑓 ,

dist

(
𝑥, arg min

𝑥 ∈R𝑑

∑
𝑖∈𝑆

𝑄𝑖 (𝑥)
)
≤ 𝜖,

despite the presence of up to 𝑓 Byzantine agents.

Thus, with (𝑓 , 𝜖)-resilience, the output is within distance 𝜖 of

a minimum point of the aggregate cost function of any 𝑛 − 𝑓

non-faulty agents. As there can be at most 𝑓 Byzantine faulty

agents whose identity remains unknown, the following two sce-

narios are indistinguishable in general: (1) there are exactly 𝑓

Byzantine agents, and (2) there are less than 𝑓 Byzantine agents.

Thus, estimation for the minimum point of the aggregate cost func-

tions of 𝑛 − 𝑓 non-faulty agents is indeed a reasonable goal [43].

Analogous resilience requirements have been previously studied

in other contexts as well, such as robust statistics (e.g., robust

mean estimation [11, 41]) and fault-tolerant linear state estima-

tion [5, 19, 20, 31, 34, 40]. In this work, we address resilience in the

context of distributed optimization.

In this paper, we only consider deterministic algorithms which,

given a fixed set of inputs from the agents, always output the same

point in R𝑑 . Thus, a deterministic (𝑓 , 𝜖)-resilient algorithm pro-

duces a unique output point in all of its executions with identical

inputs from all the agents (including the faulty ones). Note that

in the deterministic framework, exact fault-tolerance is equiva-

lent to (𝑓 , 0)-resilience, i.e., a deterministic (𝑓 , 0)-resilient algo-
rithm achieves exact fault-tolerance, and vice-versa. Therefore,

results on (𝑓 , 𝜖)-resilience for arbitrary 𝜖 ≥ 0 have a wider appli-

cation compared to results applicable only to exact fault-tolerance,

e.g., [6, 18, 24, 42].

We show that (𝑓 , 𝜖)-resilience requires a weaker redundancy con-
dition, in comparison to 2𝑓 -redundancy, named (2𝑓 , 𝜖)-redundancy
defined in Definition 3 below. Recall that the Euclidean Hausdorff
distance between two sets 𝑋 and 𝑌 in R𝑑 , which we denote by

dist (𝑋, 𝑌), is defined as follows [32]:

dist (𝑋, 𝑌) ≜ max

{
sup

𝑥 ∈𝑋
dist (𝑥, 𝑌) , sup

𝑦∈𝑌
dist (𝑦, 𝑋)

}
. (4)

Definition 3 ((2𝑓 , 𝜖)-redundancy). The agents’ cost func-
tions are said to have (2𝑓 , 𝜖)-redundancy property if and only if for
every pair of subsets 𝑆, 𝑆 ⊆ {1, . . . , 𝑛} with |𝑆 | = 𝑛 − 𝑓 ,

���𝑆 ��� ≥ 𝑛 − 2𝑓

and 𝑆 ⊆ 𝑆 ,

dist

©«arg min

𝑥 ∈R𝑑

∑
𝑖∈𝑆

𝑄𝑖 (𝑥), arg min

𝑥 ∈R𝑑

∑
𝑖∈𝑆

𝑄𝑖 (𝑥)
ª®¬ ≤ 𝜖. (5)

It is easy to show that 2𝑓 -redundancy (Definition 1) is equiva-

lent to (2𝑓 , 0)-redundancy (note that 𝜖 = 0 here). It is also obvious

that 2𝑓 -redundancy implies (2𝑓 , 𝜖)-redundancy for all 𝜖 ≥ 0. How-

ever, the converse need not be true. Thus, the (2𝑓 , 𝜖)-redundancy
property with 𝜖 > 0 is weaker than 2𝑓 -redundancy.

1.3 Applications

Our results are applicable to a large class of distributed optimization

problems; including distributed sensing [14, 34, 35, 42], distributed

machine learning [7, 8, 13, 48], and distributed linear regression

(Section 5). We discuss below the specific case of distributed learn-

ing.

Distributed Learning: In this particular optimization problem,

each agent has some local data points and the goal for the agents is

to compute a learning parameter that best models the collective data

points observed by all the agents [7]. Specifically, given a learning

parameter 𝑥 , for each data point 𝑧, we define a loss function ℓ (𝑥 ; 𝑧).
Suppose that the data generating distribution of agent 𝑖 is D𝑖 , and

let E𝑧∼D𝑖
denote the expectation with respect to the random data

point 𝑧 over distribution D𝑖 . Then,

𝑄𝑖 (𝑥) ≜ E𝑧∼D𝑖
ℓ (𝑥 ; 𝑧)

When the distribution of data points is identical for all the agents

then the 2𝑓 -redundancy property holds true. However, in practice

this is rarely the case [13, 48]. Indeed, different agents may have dif-

ferent data distributions in practice. Therefore, exact fault-tolerance

in a pragmatic distributed learning framework is an extremely dif-

ficult (if not impossible) goal. In the context of distributed learning,

our results on approximate fault-tolerance characterize the rela-

tionship between the correlation amongst different agents’ data

(i.e., degree of redundancy), and the fault-tolerance achieved.

1.4 System architecture

We consider synchronous systems. Our results apply to the two

architectures shown in Figure 1. In the server-based architecture,

the server is assumed to be trustworthy, but up to 𝑓 agents may

be Byzantine faulty. In the peer-to-peer architecture, the agents

are connected by a complete network, and up to 𝑓 of these agents

may be Byzantine faulty. Provided that 𝑓 < 𝑛
3
, an algorithm for

the server-based architecture can be simulated in the peer-to-peer

system using the well-known Byzantine broadcast primitive [30].

For simplicity of presentation, the rest of this paper considers the

server-based architecture.

Figure 1: System architecture.

1.5 Summary of Our Contributions

In the first part of the paper, i.e., Section 3, we obtain conditions

on feasibility and achievability of approximate fault-tolerance of

desirable accuracy. Specifically, we show that

• (𝑓 , 𝜖)-resilience is feasible only if (2𝑓 , 𝜖)-redundancy prop-

erty holds true.

• If (2𝑓 , 𝜖)-redundancy property holds true then (𝑓 , 2𝜖)-resilience
is achievable.

In the second part, i.e., Sections 4 and 5, we consider the case

when agents’ costs are differentiable, such as in machine learn-

ing [7, 47], or regression [22, 42, 44]. We consider the distributed

gradient-descent (DGD) method - an iterative distributed optimiza-

tion algorithm commonly used in this particular case.

• We propose a generic sufficient condition for convergence

of the DGD method equipped with a gradient-filter (also
referred as robust gradient aggregation), which is a common

fault-tolerance mechanism, e.g., see [6, 13, 24, 48].

• Later, in Section 4.2, we utilize the above result to obtain

approximate fault-tolerance properties of the following two

specific gradient-filters, under (2𝑓 , 𝜖)-redundancy: (i) Com-

parative gradient elimination (CGE) [22], and (ii) Coordinate-

wise trimmed mean (CWTM) [42]. These two gradient-filters

are both easy to implement and versatile [21, 24, 42, 48].

• Finally, in Section 5, we present empirical comparisons be-

tween approximate fault-tolerance of the two gradient-filters

by simulating a problem of distributed linear regression.

Note: As (𝑓 , 0)-resilience is equivalent to exact fault-tolerance

(see Section 1.2), our results on (𝑓 , 𝜖)-resilience encapsulate all the
existing results applicable only to exact fault-tolerance, such as the

ones in [6, 18, 24, 42].

Compared to related works [26, 27], we present precise redun-

dancy conditions needed for obtaining Byzantine fault-tolerance

within a specified approximation error. Unlike them, our results

on the impossibility and feasibility of approximate fault-tolerance

are applicable to non-differentiable cost functions. Moreover, in the

case when the cost functions are differentiable, we present a generic

condition for convergence of the DGD method that can precisely

model the approximate fault-tolerance property of a generic robust

gradient-aggregation rule (a.k.a., gradient-filter).

A full version of this paper including omitted proofs, and addi-

tional experimental results and discussion can be found on arXiv

[29].

2 OTHER RELATEDWORK

In the past, different notions of approximate fault-tolerance, be-

sides (𝑓 , 𝜖)-resilience, have been used to analyze Byzantine fault-

tolerance of different distributed optimization algorithms [16, 43].

As we discuss below in Section 2.1, the difference between these

other definitions and our definition of (𝑓 , 𝜖)-resilience arisesmainly

due to the applicability of the distributed optimization problems.

Later, in Section 2.2, we discuss some prior work on gradient-filters

used for achieving Byzantine fault-tolerance in the distributed

gradient-descent method.

2.1 Alternate Notions of Approximation in

Fault-Tolerance

As proposed by Su and Vaidya, 2016 [43], instead of a minimum

point of the uniformly weighted aggregate of non-faulty agents’

cost functions, a distributed optimization algorithm may output

a minimum point of a non-uniformly weighted aggregate of non-

faulty costs, i.e.,

∑
𝑖∈H 𝛼𝑖 𝑄𝑖 (𝑥), whereH denotes the set of at least

𝑛 − 𝑓 non-faulty agents, and 𝛼𝑖 ≥ 0 for all 𝑖 ∈ H . As is suggested

in [43], upon re-scaling the coefficients such that

∑
𝑖∈H 𝛼𝑖 = 1,

we can measure approximation in fault-tolerance using two met-

rics: (1) the number of coefficients in {𝛼𝑖 , 𝑖 ∈ H} that are posi-

tive, and (2) the minimum positive value amongst the coefficients:

min {𝛼𝑖 ; 𝛼𝑖 > 0, 𝑖 ∈ H}. Results on the achievability of this partic-

ular form of approximation for the scalar case (i.e., 𝑑 = 1) can be

found in [43, 45]. However, we are unaware of similar results for

the case of higher-dimensional optimization problem, i.e., when

𝑑 > 1. There is some work on this particular notion of approximate

fault-tolerance in high-dimensions, such as [42, 47], however their

results only apply to special cost functions, specifically, quadratic or

strictly convex functions, as opposed to the generic cost functions

(that need not even be differentiable) considered in this paper.

Another way of measuring approximation is by the value of

the aggregate cost function, or its gradient. For instance, as dis-

cussed in [16], for the case of differentiable cost functions a re-

silient distributed optimization algorithm Π may output a point

𝑥Π ∈ R𝑑 such that each element of the aggregate non-faulty gra-

dient

∑
𝑖∈H ∇𝑄𝑖 (𝑥Π) is bounded by 𝜖 . As yet another alternative,

a resilient algorithm Π may aim to output a point 𝑥Π such that

the non-faulty aggregate cost

∑
𝑖∈H 𝑄𝑖 (𝑥Π) is within 𝜖 of the true

minimum cost min𝑥
∑
𝑖∈H 𝑄𝑖 (𝑥). However, these definitions of ap-

proximate resilience are sensitive to scaling of the cost functions.

In particular, if the elements of

∑
𝑖∈H ∇𝑄𝑖 (𝑥Π) are bounded by 𝜖

then the elements of

∑
𝑖∈H 𝛼∇𝑄𝑖 (𝑥Π) are bounded by 𝛼𝜖 , where 𝛼

is a positive scalar value. On the other hand, both

∑
𝑖∈H 𝑄𝑖 (𝑥) and∑

𝑖∈H 𝛼𝑄𝑖 (𝑥) have identical minimum point regardless of the value

of 𝛼 . Therefore, when the objective is to approximate a minimum

point of the non-faulty aggregate cost argmin𝑥
∑
𝑖∈H 𝑄𝑖 (𝑥), which

is indeed the case in this paper, use of function (or gradient) values

to measure approximation is not a suitable choice.

2.2 Gradient-Filters

In the past, several gradient-filters have been proposed to robustify
the distributed gradient-descent (DGD) method against Byzantine

faulty agents in a server-based architecture, e.g., see [1, 6, 15, 16,

21, 36, 43, 48]. A gradient-filter refers to Byzantine robust aggre-
gation of agents’ gradients that mitigates the detrimental impact

of incorrect gradients sent by the Byzantine agents to the server.

To name a few gradient-filters, that are provably effective against

Byzantine agents, we have the comparative gradient elimination

(CGE) [21, 22], coordinate-wise trimmed mean (CWTM) [43, 48],

geometric median-of-means (GMoM) [13], KRUM [6], Bulyan [18],

and other spectral gradient-filters [16]. Different gradient-filters

guarantee some fault-tolerance under different assumptions on

non-faulty agents’ cost functions.

In this paper, we propose a generic result, in Theorem 3 in Sec-

tion 4, on the convergence of the DGD method equipped with a

gradient-filter. The result holds true regardless of the gradient-filter

used, and thus, can be utilized to obtain formal fault-tolerance prop-

erty of a gradient-filter in context of the considered distributed

optimization problem. We demonstrate this, in Section 4.2, by ob-

taining (𝑓 , 𝜖)-resilience properties of two specific gradient-filters;

CGE and CWTM. As exact fault-tolerance is equivalent to (𝑓 , 0)-
resilience (see Section 1.2), our results generalize the prior work

on exact fault-tolerance of these two filters, see [21, 22, 42]. More-

over, until now, exact fault-tolerance of the CWTM gradient-filter

was only studied for special optimization problems of state esti-

mation [42], and machine learning [48]. Our result presents the

fault-tolerance property of CWTM for a much larger class of opti-

mization problems.

2.3 Robust Statistics with Arbitrary Outliers

As noted earlier, there has been work on the problem of robust

statistics with arbitrary outliers [11, 20, 41]. In this problem, we

are given a finite set of data points; 𝛼 fraction of which are sam-

pled independently and identically from a common distribution

D in R𝑑 , and the remaining 1 − 𝛼 fraction of data points may be

arbitrary. The identity of arbitrary data points is a priori unknown,

otherwise the problem is trivialized. The objective in this prob-

lem is to estimate statistical measures of distribution D, such as

mean, or variance, despite the presence of arbitrary outliers. The

problem robust mean estimation can potentially be modelled as

a fault-tolerant distributed optimization problem where for each

non-faulty agent 𝑖 , 𝑄𝑖 (𝑥) : (𝑥, 𝑥𝑖) ↦→ 𝑦 ∈ R for all 𝑥 ∈ R𝑑 where

𝑥𝑖 ∼ D. A faulty agent may choose an arbitrary cost function. The

cost functions can be designed in a manner such that the minimum

point of the aggregate of non-faulty cost functions is equal to the

mean for the non-faulty data points. In particular, suppose that for

each non-faulty agent 𝑖 , 𝑄𝑖 (𝑥) ≜ ∥𝑥 − 𝑥𝑖 ∥2 where 𝑥𝑖 ∼ D. In this

case, the minimum point of the non-faulty aggregate cost function

is equal to the average of the non-faulty data points sampled from

distribution D.

Prior work on robust statistics considers a centralized setting

wherein, unlike a distributed setting, all the data points are accessi-

ble to a single machine. In this report, we also present distributed

algorithms that do not require the agents to share their local data

points. Moreover, in the centralized setting, our results are ap-

plicable to a larger class of cost functions, including non-convex

functions.

2.4 Fault-tolerance in State Estimation

The problem of distributed optimization finds direct application in

distributed state estimation [37]. In this problem, the system com-

prises multiple sensors, and each sensor makes partial observations

about the system’s state. The goal is to compute the entire state

of the system using collective observations from all the sensors.

However, if a sensor is faulty then it may share incorrect obser-

vations, preventing correct state estimation. The special case of

distributed state estimation when the observations are linear in
the system’s state has gained significant attention in the past, e.g.

see [5, 14, 31, 34, 35, 39, 40, 42]. These works have shown that the

state can be determined despite up to 𝑓 (out of 𝑛) faulty obser-

vations if and only if the system is 2𝑓 -sparse observable, i.e., the
complete state can be determined using observations of only 𝑛− 2𝑓

non-faulty sensors. We note that, in this particular case, 2𝑓 -sparse
observability is equivalent to 2𝑓 -redundancy. Additionally, some

of these works, such as [31, 42], also consider the case of approxi-
mate linear state estimation when the observations are noisy. Our

work is more general in that we consider the problem setting of

distributed optimization, and our results apply to a larger class of

cost functions.

3 NECESSARY AND SUFFICIENT

CONDITIONS FOR (𝑓 , 𝜖)-RESILIENCE
Throughout this paper we assume, as stated below, that the non-

faulty agents’ cost functions and their aggregates have well-defined

minimum points. Otherwise, the problem of optimization is ren-

dered vacuous.

Assumption 1. For every non-empty set of non-faulty agents 𝑆 ,
we assume that the set argmin𝑥 ∈R𝑑

∑
𝑖∈𝑆 𝑄𝑖 (𝑥) is non-empty and

closed.

We also assume that 𝑓 < 𝑛/2. Lemma 1 below shows that (𝑓 , 𝜖)-
resilience is impossible in general when 𝑓 ≥ 𝑛/2. Proof of Lemma 1

is easy, and can be found in the full version of this paper on arXiv.

Lemma 1. If 𝑓 ≥ 𝑛/2 then there cannot exist a deterministic
(𝑓 , 𝜖)-resilient algorithm for any 𝜖 ≥ 0.

3.1 Necessary Condition

Theorem 1. Suppose that Assumption 1 holds true. There exists
a deterministic (𝑓 , 𝜖)-resilient distributed optimization algorithm
where 𝜖 ≥ 0 only if the agents’ cost functions satisfy the (2𝑓 , 𝜖)-
redundancy property.

Proof. To prove the theorem we present a scenario when the

agents’ cost functions (if non-faulty) are scalar functions, i.e., 𝑑 = 1

and for all 𝑖 ,𝑄𝑖 : R→ R, and the minimum point of an aggregate of

one or more agents’ cost functions is uniquely defined. Obviously,

if a condition is necessary in this particular scenario then it is so

in the general case involving vector functions with non-unique

minimum points.

To prove the necessary condition, we also assume that the server

has full knowledge of all the agents’ cost functions. This may not

hold true in practice, where instead the server may only have partial

information about the agents’ cost functions. Indeed, this assump-

tion forces the Byzantine faulty agents to a priori fix their cost

functions. However, in reality the Byzantine agents may send arbi-

trary information over time to the server that need not be consistent

with a fixed cost function. Thus, necessity of (2𝑓 , 𝜖)-redundancy
under this strong assumption implies its necessity in general.

The proof is by contradiction. Specifically, we show that If the cost
functions of non-faulty agents do not satisfy the (2𝑓 , 𝜖)-redundancy
property then there cannot exist a deterministic (𝑓 , 𝜖)-resilient dis-
tributed optimization algorithm.

Recall that we have assumed that for a non-empty set of agents

𝑇 the aggregate cost function

∑
𝑖∈𝑇 𝑄𝑖 (𝑥) has a unique minimum

point. To be precise, for each non-empty subset of agents 𝑇 , we

define

𝑥𝑇 = argmin

𝑥

∑
𝑖∈𝑇

𝑄𝑖 (𝑥) .

Suppose that the agents’ cost functions do not satisfy the (2𝑓 , 𝜖)-
redundancy property stated in Definition 3. Then, there exists a

real number 𝛿 > 0 and a pair of subsets 𝑆, 𝑆 with 𝑆 ⊂ 𝑆 , |𝑆 | = 𝑛 − 𝑓 ,

and 𝑛 − 2𝑓 ≤
���𝑆 ��� < 𝑛 − 𝑓 such that𝑥

𝑆
− 𝑥𝑆

 ≥ 𝜖 + 𝛿. (6)

Now, suppose that𝑛−𝑓 −
���𝑆 ��� agents in the remainder set {1, . . . , 𝑛}\𝑆

are Byzantine faulty. Let us denote the set of faulty agents by B.

Note that B is non-empty with |B| = 𝑛 − 𝑓 −
���𝑆 ��� ≤ 𝑓 . Similar to

the non-faulty agents, the faulty agents send to the server cost

functions that are scalar, and the aggregate of one or more agents’

cost functions in the set 𝑆 ∪ B is unique. However, the aggregate

cost function of the agents in the set B ∪ 𝑆 minimizes at a unique

point 𝑥B∪𝑆 which is

𝑥
𝑆
− 𝑥𝑆

 distance away from 𝑥
𝑆
, similar to

𝑥𝑆 , but lies on the other side of 𝑥
𝑆
as shown in the figure below.

Note that it is always possible to pick such functions for the faulty

agents.

xS x
Ŝ

xB∪Ŝ

][
← ε+ δ → ← ε+ δ →

εε x̂

Note that the distance between the two points 𝑥𝑆 and 𝑥B∪𝑆 is

2𝜖 + 2𝛿 , i.e., 𝑥𝑆 − 𝑥B∪𝑆

 = 2𝜖 + 2𝛿. (7)

Now, suppose, toward a contradiction, that there exists an (𝑓 , 𝜖)-
resilient deterministic optimization algorithm named Π. As the
identity of Byzantine faulty agents is a priori unknown to the

server, and the cost functions sent by the Byzantine faulty agents

have similar properties as the non-faulty agents, the server cannot

distinguish between the following two possible scenarios; i) 𝑆 is

the set of non-faulty agents, and ii) B ∪ 𝑆 is the set of non-faulty

agents. Note that both the sets 𝑆 and B ∪ 𝑆 contain 𝑛 − 𝑓 agents.

As the cost functions received by the server are identical in both

of the above scenarios, being a deterministic algorithm, Π should

have identical output in both the cases. We let 𝑥 denote the output

of Π. In scenario (i) when the set of honest agents is given by 𝑆

with |𝑆 | = 𝑛 − 𝑓 , as Π is assumed (𝑓 , 𝜖)-resilient, by Definition 2

the output

𝑥 ∈ [𝑥𝑆 − 𝜖, 𝑥𝑆 + 𝜖] (8)

as shown in the figure above. Similarly, in scenario (ii) when the

set of honest agents is B ∪ 𝑆 with

���B ∪ 𝑆

��� = 𝑛 − 𝑓 ,

𝑥 ∈ [𝑥B∪𝑆 − 𝜖, 𝑥B∪𝑆 + 𝜖] . (9)

However, (7) implies that (8) and (9) cannot be satisfied simultane-

ously. That is, if Π is (𝑓 , 𝜖)-resilient in scenario (i) then it cannot be

so in scenario (ii), and vice-versa. This contradicts the assumption

that Π is (𝑓 , 𝜖)-resilient. □

3.2 Sufficient Condition

Theorem 2. Suppose that Assumption 1 holds true. For a real
value 𝜖 ≥ 0, if the agents’ cost functions satisfy the (2𝑓 , 𝜖)-redundancy
property then (𝑓 , 2𝜖)-resilience is achievable.

Proof. The proof is constructive where we assume that all the

agents send their individual cost functions to the server. We assume

that 𝑓 > 0 to avoid the trivial case of 𝑓 = 0. Throughout the proof

we write the notation argmin𝑥 ∈R𝑑 simply as argmin, unless other-

wise stated.We begin by presenting an algorithm below, comprising

three steps.

Step 1: Each agent sends their cost function to the server. An hon-

est agent sends its actual cost function, while a faulty agent

may send an arbitrary function.

Step 2: For each set𝑇 of received functions, |𝑇 | = 𝑛 − 𝑓 , the server

computes a point

𝑥𝑇 ∈ argmin

∑
𝑖∈𝑇

𝑄𝑖 (𝑥) .

For each subset 𝑇 ⊂ 𝑇 ,

���𝑇 ��� = 𝑛 − 2𝑓 , the server computes

𝑟
𝑇𝑇
≜ dist

©«𝑥𝑇 , argmin

∑
𝑖∈𝑇

𝑄𝑖 (𝑥)
ª®¬ , (10)

and

𝑟𝑇 = max

𝑇 ⊂𝑇,���𝑇 ���=𝑛−2𝑓
𝑟
𝑇𝑇 .

(11)

Step 3: The server outputs 𝑥𝑆 such that

𝑆 = argmin

𝑇 ⊂{1,..., 𝑛},
|𝑇 |=𝑛−𝑓

𝑟𝑇 . (12)

We show that above algorithm is (𝑓 , 2𝜖)-resilient under (2𝑓 , 𝜖)-
redundancy. For a non-empty set of agents 𝑇 , we denote

𝑋𝑇 = argmin

∑
𝑖∈𝑇

𝑄𝑖 (𝑥) .

Consider an arbitrary set of non-faulty agents𝐺 with |𝐺 | = 𝑛− 𝑓 .

Such a set is guaranteed to exist as there are at most 𝑓 faulty agents,

and therefore, at least 𝑛 − 𝑓 non-faulty agents exist in the system.

Consider an arbitrary set 𝑇 such that 𝑇 ⊂ 𝐺 and

���𝑇 ��� = 𝑛 − 2𝑓 . By

Definition 3 of (2𝑓 , 𝜖)-redundancy,

dist

(
𝑋𝐺 , 𝑋𝑇

)
≤ 𝜖. (13)

Recall from (10) that 𝑟
𝐺𝑇

= dist

(
𝑥𝐺 , 𝑋𝑇

)
. As 𝑥𝐺 ∈ 𝑋𝐺 , by Defini-

tion (4) of Hausdorff set distance, dist

(
𝑥𝐺 , 𝑋𝑇

)
≤ dist

(
𝑋𝐺 , 𝑋𝑇

)
.

Therefore, 𝑟
𝐺𝑇

≤ dist

(
𝑋𝐺 , 𝑋𝑇

)
, and substituting from (13) implies

that

𝑟
𝐺𝑇

≤ 𝜖. (14)

Now, recall from (11) that 𝑟𝐺 = max

{
𝑟
𝐺𝑇

𝑇 ⊂ 𝐺,

���𝑇 ��� = 𝑛 − 2𝑓

}
.

As 𝑇 in (14) is an arbitrary subset of 𝐺 with

���𝑇 ��� = 𝑛 − 2𝑓 ,

𝑟𝐺 = max

𝑇 ⊂𝐺,���𝑇 ���=𝑛−2𝑓
𝑟
𝐺𝑇

≤ 𝜖. (15)

From (12) and (15) we obtain that

𝑟𝑆 ≤ 𝑟𝐺 ≤ 𝜖. (16)

As |𝐺 | = 𝑛 − 𝑓 , for every set of agents 𝑇 with |𝑇 | = 𝑛 − 𝑓 ,

|𝑇 ∩𝐺 | ≥ 𝑛 − 2𝑓 . Therefore, for the set 𝑆 defined in (12), there

exists a subset𝐺 of𝐺 such that𝐺 ⊂ 𝑆 and

���𝐺 ��� = 𝑛 − 2𝑓 . For such a

set 𝐺 , by definition of 𝑟𝑆 in (11), we obtain that

𝑟
𝑆𝐺
≜ dist

(
𝑥𝑆 , 𝑋𝐺

)
≤ 𝑟𝑆 .

Substituting from (16) above, we obtain that

dist

(
𝑥𝑆 , 𝑋𝐺

)
≤ 𝜖. (17)

As 𝐺 is a subset of 𝐺 , all the agents in𝐺 are non-faulty. Therefore,

by Assumption 1, 𝑋
𝐺
is a closed set. Recall that dist

(
𝑥𝑆 , 𝑋𝐺

)
=

inf𝑥 ∈𝑋
𝐺
∥𝑥𝑆 − 𝑥 ∥. The closedness of 𝑋

𝐺
implies that there exists a

point 𝑧 ∈ 𝑋
𝐺
such that

∥𝑥𝑆 − 𝑧∥ = inf

𝑥 ∈𝑋
𝐺

∥𝑥𝑆 − 𝑥 ∥ = dist

(
𝑥𝑆 , 𝑋𝐺

)
.

The above, in conjunction with (17), implies that

∥𝑥𝑆 − 𝑧∥ ≤ 𝜖. (18)

Moreover, as 𝑧 ∈ 𝑋
𝐺
where𝐺 ⊂ 𝐺 with

���𝐺 ��� = 𝑛−2𝑓 and |𝐺 | = 𝑛− 𝑓 ,

the (2𝑓 , 𝜖)-redundancy condition stated in Definition 3 implies

that dist (𝑧, 𝑋𝐺) ≤ 𝜖 . Similar to an argument made above, under

Assumption 1,𝑋𝐺 is a closed set, and therefore, there exists 𝑥∗ ∈ 𝑋𝐺
such that 𝑧 − 𝑥∗

 = dist (𝑧, 𝑋𝐺) ≤ 𝜖. (19)

By triangle inequality, (18) and (19) implies that ∥𝑥𝑆 − 𝑥∗∥ ≤ ∥𝑥𝑆 − 𝑧∥+
∥𝑧 − 𝑥∗∥ ≤ 2𝜖 . Recall that set 𝐺 here is an arbitrary set of 𝑛 − 𝑓

non-faulty agents. □

It is worth noting that the algorithm constructed in the proof of

Theorem 2 only shows sufficiency; it is not a very practical algo-

rithm due to being computationally expensive.

In the next part of the paper, i.e., Sections 4 and 5, we consider the

case when the (non-faulty) agents’ cost functions are differentiable.

Specifically, we study approximate fault-tolerance in the distributed

gradient-descent (DGD) method.

4 DISTRIBUTED GRADIENT-DESCENT (DGD)

METHOD

In this section, we consider a setting wherein the non-faulty agents’

cost functions are differentiable. In this particular case, we study

the approximate fault-tolerance of the distributed gradient-descent

method coupled with a gradient-filter, described below. We consider

the server-based system architecture, shown in Fig. 1, assuming a

synchronous system.

The DGD method is an iterative algorithm wherein the server

maintains an estimate of a minimum point, and updates it iteratively

using gradients sent by the agents. Specifically, in each iteration

𝑡 ∈ {0, 1, . . .}, the server starts with an estimate 𝑥𝑡 and broadcasts

to all the agents. Each non-faulty agent 𝑖 sends back to the sever the

gradient of its cost function at 𝑥𝑡 , i.e., ∇𝑄𝑖 (𝑥𝑡). However, Byzantine
faulty agents may send arbitrary incorrect vectors as their gradients

to the server. The initial estimate, named 𝑥0, is chosen arbitrarily

by the server.

A gradient-filter is a vector function, denoted by GradFilter, that
maps the 𝑛 gradients received by the server from all the 𝑛 agents

to a 𝑑-dimensional vector, i.e., GradFilter : R𝑑×𝑛 → R𝑑 . For exam-

ple, an average of all the gradients as in the case of the traditional

distributed gradient-descent method is technically a gradient-filter.

However, averaging is not quite robust against Byzantine faulty

agents [6, 43]. The real purpose of a gradient-filter is to mitigate

the detrimental impact of incorrect gradients sent by the Byzan-

tine faulty agents. In other words, a gradient-filter robustifies the
traditional gradient-descent method against Byzantine faults. We

show that if a gradient-filter satisfies a certain property then it can

confer fault-tolerance to the distributed gradient-descent method.

We first formally describe below the steps in each iteration of the

distributed gradient-descent method implemented on a synchro-

nous server-based system. Note that we constrain the estimates

computed by the server to a compact convex set W ⊂ R𝑑 . The set
W can be arbitrarily large. For a vector 𝑥 ∈ R𝑑 , its projection onto

W, denoted by [𝑥]W , is defined to be

[𝑥]W = arg min

𝑦∈W
∥𝑥 − 𝑦∥ . (20)

As W is a convex and compact set, [𝑥]W is unique for each 𝑥

(see [9]).

4.1 Steps in 𝑡-th iteration

In each iteration 𝑡 ∈ {0, 1, . . .} the server updates its current esti-
mate 𝑥𝑡 to 𝑥𝑡+1 using Steps S1 and S2 described as follows.

S1: The server requests from each agent the gradient of its local

cost function at the current estimate 𝑥𝑡 . Each non-faulty

agent 𝑖 will then send to the server the gradient ∇𝑄𝑖 (𝑥𝑡),
whereas a faulty agent may send an incorrect arbitrary value

for the gradient.

The gradient received by the server from agent 𝑖 is denoted as

𝑔𝑡
𝑖
. If no gradient is received from some agent 𝑖 , agent 𝑖 must

be faulty (because the system is assumed to be synchronous)

– in this case, the server eliminates the agent 𝑖 from the

system, updates the values of 𝑛, 𝑓 , and re-assigns the agents

indices from 1 to 𝑛.

S2: [Gradient-filtering] The server applies a gradient-filter

GradFilter to the 𝑛 received gradients and computes

GradFilter
(
𝑔𝑡
1
, . . . , 𝑔𝑡𝑛

)
∈ R𝑑 . Then, the server updates its

estimate to

𝑥𝑡+1 =
[
𝑥𝑡 − [𝑡 GradFilter

(
𝑔𝑡
1
, . . . , 𝑔𝑡𝑛

)]
W (21)

where [𝑡 is the step-size of positive value for iteration 𝑡 .

We propose, in Theorem 3, a generic convergence result for the

above algorithm.

Theorem 3. Consider the update rule (21) in the above iterative
algorithm, with diminishing step-sizes {[𝑡 , 𝑡 = 0, 1, . . .} satisfying∑∞
𝑡=0 [𝑡 = ∞ and

∑∞
𝑡=0 [

2

𝑡 < ∞. Suppose thatGradFilter (𝑔𝑡
1
, . . . , 𝑔𝑡𝑛

) < ∞

for all 𝑡 . For some point 𝑥∗ ∈ W, if there exists real-valued constants
D∗ ∈ [0,max𝑥 ∈W ∥𝑥 − 𝑥∗∥) and b > 0 such that for each iteration

𝑡 ,

𝜙𝑡 =
〈
𝑥𝑡 − 𝑥∗, GradFilter

(
𝑔𝑡
1
, . . . , 𝑔𝑡𝑛

)〉
≥ b when

𝑥𝑡 − 𝑥∗
 ≥ D∗,

(22)

then lim𝑡→∞
𝑥𝑡 − 𝑥∗

 ≤ D∗.

The values D∗
and b in Theorem 3 may be interdependent. Proof

of Theorem 3 can be found in the full version of this paper on arXiv.

Using Theorem 3we can obtain conditions underwhich a gradient-

filter guarantees the approximate fault-tolerance property of (𝑓 , 𝜖)-
resilience with 𝜖 ≥ 0, of which exact fault-tolerance is a special

case. On the other hand, the prior results on the convergence of

DGD method with a gradient-filter, e.g., see [6, 18], apply only to

exact fault-tolerance.

We demonstrate below the utility of Theorem 3 to obtain the

fault-tolerance properties of two commonly used gradient-filters in

the literature; namely Comparative Gradient Elimination [21] and

Coordinate-Wise Trimmed Mean [42].

4.2 Gradient-Filters and their Fault-Tolerance

Properties

In this subsection, we present precise approximate fault-tolerance

properties of two specific gradient-filters; the Comparative Gradi-

ent Elimination (CGE) [21, 22], and the Coordinate-Wise Trimmed

Mean (CWTM) [42, 48]. Note that differentiability of non-faulty

agents’ cost functions, which is already assumed for the DGD

method, implies Assumption 1 (see [9]). We additionally make

Assumptions 2, 3 and 4 about the non-faulty agents’ cost func-

tions. Similar assumptions are made in prior work on fault-free

distributed optimization [4, 8, 33].

Assumption 2 (Lipschitz smoothness). For each non-faulty
agent 𝑖 , we assume that the gradient of its cost function ∇𝑄𝑖 (𝑥) is
Lipschitz continuous, i.e., there exists a finite real value ` > 0 such
that ∇𝑄𝑖 (𝑥) − ∇𝑄𝑖 (𝑥 ′)

 ≤ `
𝑥 − 𝑥 ′

 , ∀𝑥, 𝑥 ′ ∈ W .

Assumption 3 (Strong convexity). For a non-empty set of
non-faulty agentsH , let 𝑄H (𝑥) denote the average cost function of
the agents inH , i.e.,

𝑄H (𝑥) = 1

|H |
∑
𝑖∈H

𝑄𝑖 (𝑥).

For each such set H with |H | = 𝑛 − 𝑓 , we assume that 𝑄H (𝑥) is
strongly convex, i.e., there exists a finite real value 𝛾 > 0 such that〈

∇𝑄 (𝑥) − ∇𝑄 (𝑥 ′), 𝑥 − 𝑥 ′
〉
≥ 𝛾

𝑥 − 𝑥 ′
2 , ∀𝑥, 𝑥 ′ ∈ W .

Note that, under Assumptions 2 and 3, 𝛾 ≤ `. The proof of

this inequality can be found in the full version of this paper on

arXiv. Now, recall that the iterative estimates of the algorithm in

Section 4.1 are constrained to a compact convex setW ⊂ R𝑑 .

Assumption 4 (Existence). For each set of non-faulty agents
H with |H | = 𝑛 − 𝑓 , we assume that there exists a point 𝑥H ∈
argmin𝑥 ∈R𝑑

∑
𝑖∈H 𝑄𝑖 (𝑥) such that 𝑥H ∈ W.

We describe below the CGE and CWTM gradient-filters. Later,

we obtain the fault-tolerance properties of these filters using the

result stated in Theorem 3, under (2𝑓 , 𝜖)-redundancy.

CGE Gradient-Filter: To apply the CGE gradient-filter in Step

S2, the server sorts the 𝑛 gradients received from the 𝑛 agents at

the completion of Step S1 as per their Euclidean norms (ties broken

arbitrarily):𝑔𝑡𝑖1 ≤ . . . ≤
𝑔𝑡𝑖𝑛−𝑓 ≤

𝑔𝑡𝑖𝑛−𝑓 +1 ≤ . . . ≤
𝑔𝑡𝑖𝑛 .

That is, the gradient with the smallest norm, 𝑔𝑡
𝑖1
, is received from

agent 𝑖1, and the gradient with the largest norm, 𝑔𝑡
𝑖𝑛
, is received

from agent 𝑖𝑛 . Then, the output of the CGE gradient-filter is the

vector sum of the 𝑛 − 𝑓 gradients with smallest 𝑛 − 𝑓 Euclidean

norms. Specifically,

GradFilter
(
𝑔𝑡
1
, . . . , 𝑔𝑡𝑛

)
=

𝑛−𝑓∑
𝑗=1

𝑔𝑡𝑖 𝑗 . (23)

CWTMGradient-Filter: To implement this particular gradient-

filter in Step S2, the server sorts the 𝑛 gradients received from the 𝑛

agents at the completion of Step S1 as per their individual elements.

For a vector 𝑣 ∈ R𝑑 , we let 𝑣 [𝑘] denote its 𝑘-th element. Specifically,

for each 𝑘 ∈ {1, . . . , 𝑑}, the server sorts the 𝑘-th elements of the

gradients by breaking ties arbitrarily:

𝑔𝑡
𝑖1 [𝑘] [𝑘] ≤ . . . ≤ 𝑔𝑡

𝑖𝑓 +1 [𝑘] [𝑘] ≤ . . . ≤ 𝑔𝑡
𝑖𝑛−𝑓 [𝑘] [𝑘] ≤ . . . ≤ 𝑔𝑡

𝑖𝑛 [𝑘] [𝑘] .

The gradient with the smallest of the𝑘-th element,𝑔𝑡
𝑖1 [𝑘] , is received

from agent 𝑖1 [𝑘], and the gradient with the largest of the 𝑘-th

element, 𝑔𝑡
𝑖𝑛 [𝑘] , is received from agent 𝑖𝑛 [𝑘]. For each 𝑘 , the server

eliminates the largest 𝑓 and the smallest 𝑓 of the 𝑘-th elements of

the gradients received. Then, the output of the CWTM gradient-

filter is a vector whose 𝑘-th element is equal to the average of

the remaining 𝑛 − 2𝑓 gradients’ 𝑘-th elements. That is, for each

𝑘 ∈ {1, . . . , 𝑑},

GradFilter
(
𝑔𝑡
1
, . . . , 𝑔𝑡𝑛

)
[𝑘] = 1

𝑛 − 2𝑓

𝑛−𝑓∑
𝑗=𝑓 +1

𝑔𝑡
𝑖 𝑗 [𝑘] [𝑘] . (24)

We present the precise fault-tolerance properties of the two

gradient-filters in Theorems 4 and 5 below. However, the reader

may skip to Section 5 without loss of continuity. Proofs of the

theorems can be found in the full version of this paper on arXiv.

Note that, under Assumptions 3 and 4, for each non-empty set of

non-faulty agentsH with |H | = 𝑛 − 𝑓 , the aggregate cost function∑
𝑖∈H 𝑄𝑖 (𝑥) has a unique minimum point, denoted by 𝑥H , in the

set W. Specifically,

{𝑥H} = W ∩ arg min

𝑥 ∈R𝑑

∑
𝑖∈H

𝑄𝑖 (𝑥) . (25)

We first show below, in Theorem 4, that when the fraction of

Byzantine faulty agents 𝑓 /𝑛 is bounded then the DGD method

with the CGE gradient-filter is (𝑓 , O(𝜖))-resilient, under (2𝑓 , 𝜖)-
redundancy and the above assumptions.

Theorem 4. Suppose that the non-faulty agents’ cost functions
satisfy the (2𝑓 , 𝜖)-redundancy property, and the Assumptions 2, 3
and 4 hold true. Consider the algorithm in Section 4.1 with the CGE
gradient-filter defined in (23). The following holds true:

(1)
GradFilter (𝑔𝑡

1
, . . . , 𝑔𝑡𝑛

) < ∞ for all 𝑡 .
(2) If

𝛼 = 1 − 𝑓

𝑛

(
1 + 2`

𝛾

)
> 0 (26)

then for each set of 𝑛 − 𝑓 non-faulty agentsH , for each 𝛿 > 0,

𝜙𝑡 =
〈
𝑥𝑡 − 𝑥H, GradFilter

(
𝑔𝑡
1
, . . . , 𝑔𝑡𝑛

)〉
≥ 𝛼𝑛𝛾𝛿

((
4`𝑓

𝛼𝛾

)
𝜖 + 𝛿

)
when

𝑥𝑡 − 𝑥∗
 ≥

(
4`𝑓

𝛼 𝛾

)
𝜖 + 𝛿.

Let H denote an arbitrary set of 𝑛 − 𝑓 non-faulty agents. If the

step-size [𝑡 in (21) is diminishing, i.e.,

∑∞
𝑡=0 [𝑡 = ∞ and

∑∞
𝑡=0 [

2

𝑡 <

∞, then Theorem 4, in conjunction with Theorem 3 implies that,

under the said conditions,

lim

𝑡→∞

𝑥𝑡 − 𝑥H
 ≤

(
4`𝑓

𝛼 𝛾

)
𝜖 + 𝛿, ∀𝛿 > 0.

The above implies that lim𝑡→∞
𝑥𝑡 − 𝑥H

 ≤ (4`𝑓 /𝛼𝛾) 𝜖 . Thus,
Theorem 4 shows that under (2𝑓 , 𝜖)-redundancy, and Assump-

tions 2, 3 and 4, if 𝛼 > 0, or the fraction of Byzantine faulty agents

𝑓 /𝑛 is less than 1/(1 + 2(`/𝛾)), then the DGDmethod with the CGE

gradient-filter is asymptotically (𝑓 , D𝜖)-resilient (by Definition 2)

where

D =
4`𝑓

𝛼𝛾
=

4` 𝑛

(𝑛/𝑓) 𝛾 − (𝛾 + 2`) . (27)

A smaller number 𝑓 of Byzantine faulty agents implies a smaller

value of D, and therefore, better fault-tolerance of the algorithm.

Moreover, D = 0 when 𝑓 = 0, i.e., the algorithm indeed converges

to the actual minimum point of all the agents’ aggregate cost func-

tion in the fault-free case. Note that under Assumptions 2 and 3,

𝛾 ≤ `. So, the fault-tolerance guarantee of the CGE gradient-filter,

presented in Theorem 4, requires 𝑓 /𝑛 < 1/3, or 𝑓 < 𝑛/3.

Next, we show that when the separation between the gradients

of the non-faulty agents’ cost functions is sufficiently small then

the CWTM gradient-filter can guarantee some approximate fault-

tolerance under (2𝑓 , 𝜖)-redundancy. To present the fault-tolerance

of the CWTM gradient-filter, we make the following additional

assumption.

Assumption 5. For two non-faulty agents 𝑖 and 𝑗 , we assume
that there exists _ > 0 such that for all 𝑥 ∈ W,∇𝑄𝑖 (𝑥) − ∇𝑄 𝑗 (𝑥)

 ≤ _max

{
∥∇𝑄𝑖 (𝑥)∥ ,

∇𝑄 𝑗 (𝑥)
} .

Due to the triangle triangle inequality, Assumption 5 trivially

holds true when _ = 2. However, we can presently guarantee fault-

tolerance of CWTM gradient-filter when _ < 𝛾/(`
√
𝑑) where ` and

𝛾 are the Lipschitz smoothness and strong convexity coefficients,

respectively defined in Assumption 2 and 3. Recall the definition

of point 𝑥H ∈ R𝑑 from (25) where H denotes an arbitrary set of

𝑛 − 𝑓 non-faulty agents.

Theorem 5. Suppose that the non-faulty agents’ cost functions
satisfy the (2𝑓 , 𝜖)-redundancy property, and the Assumptions 2, 3, 4
and 5 hold true. Consider the algorithm in Section 4.1 with the CWTM
gradient-filter defined in (24). The following holds true:

(1)
GradFilter (𝑔𝑡

1
, . . . , 𝑔𝑡𝑛

) < ∞ for all 𝑡 .

(2) If _ < 𝛾/(`
√
𝑑) then for each set of 𝑛 − 𝑓 non-faulty agents

H , for each 𝛿 > 0,

𝜙𝑡 =
〈
𝑥𝑡 − 𝑥H, GradFilter

(
𝑔𝑡
1
, . . . , 𝑔𝑡𝑛

)〉
≥

(
2

√
𝑑𝑛`_𝜖 +

(
𝛾 −

√
𝑑_`

)
𝛿

)
𝛿

when
𝑥𝑡 − 𝑥H

 ≥
2

√
𝑑𝑛`_

(𝛾 −
√
𝑑`_)

𝜖 + 𝛿.

By similar arguments as in the case of CGE, Theorem 5, in

conjunction with Theorem 3, implies that the DGD method with

CWTM gradient-filter and diminishing step-sizes is asymptotically

(𝑓 , D′ 𝜖)-resilient where

D′ =
2

√
𝑑𝑛`_

(𝛾 −
√
𝑑`_)

=

(
2𝑛

(𝛾/`_
√
𝑑) − 1

)
,

under the conditions stated in Theorem 5. The smaller the value

of _ is, i.e., the closer non-faulty gradients to each other are, the

smaller is the value of D′
, and therefore, better is the approximate

fault-tolerance guarantee of the CWTM gradient-filter. Unlike the

CGE gradient-filter, resilience of CWTM presented in Theorem 5

is independent of 𝑓 , as long as _ < 𝛾/(`
√
𝑑). However, the con-

dition on _ to guarantee the resilience of CWTM gradient-filter

depends upon the dimension 𝑑 of the optimization problem. Larger

dimension result in a tighter bound on _.

5 NUMERICAL EXPERIMENTS

Wepresent simulation results for an empirical evaluation of the CGE

and CWTM gradient-filters applied to the problem of distributed
linear regression [2]. More experimental details can be found in

the full version of this paper on arXiv. We consider the synchro-

nous server-based system in Figure 1. We assume that 𝑛 = 6 and

𝑓 = 1. Each agent 𝑖 knows a row vector 𝐴𝑖 of dimension 𝑑 = 2.

Each agent 𝑖 makes a real-valued (scalar) observation denoted by

𝐵𝑖 such that 𝐵𝑖 = 𝐴𝑖𝑥
∗ + 𝑁𝑖 , where 𝑥

∗ = (1, 1)𝑇 for all 𝑖 , and 𝑁𝑖 is

a randomly chosen noise. The value of 𝐴𝑖 , 𝐵𝑖 and 𝑁𝑖 are omitted

here for brevity.To solve the linear regression problem distributedly,

each agent 𝑖’s cost function is defined as𝑄𝑖 (𝑥) = (𝐵𝑖 −𝐴𝑖𝑥)2. For a
non-empty set of agents 𝑆 , we denote by 𝐴𝑆 a matrix of dimension

|𝑆 | × 2 obtained by stacking rows {𝐴𝑖 , 𝑖 ∈ 𝑆}. Similarly, we obtain

column vector 𝐵𝑆 by stacking the values {𝐵𝑖 , 𝑖 ∈ 𝑆}. Thus for every
such non-empty set 𝑆 , 𝑄𝑆 (𝑥) ≜

∑
𝑖∈𝑆 (𝐵𝑖 −𝐴𝑖𝑥)2 = ∥𝐵𝑆 −𝐴𝑆𝑥 ∥2.

The rows 𝐴1, . . . , 𝐴𝑛 are chosen specifically to ensure that the sys-

tem has 2𝑓 -redundancy if 𝑁𝑖 = 0 for all 𝑖 .That is, each matrix 𝐴𝑆

with |𝑆 | ≥ 𝑛 − 2𝑓 = 4 is column full-rank or rank (𝐴𝑆) = 𝑑 = 2.

Consequentially, the cost function 𝑄𝑆 (𝑥) has a unique minimum

point for each set 𝑆 with |𝑆 | ≥ 4.

We simulate the distributed gradient-descent algorithm described

in Section 4 by assuming agent 1 to be Byzantine faulty, i.e., the

set of honest agents is H = {2, 3, 4, 5, 6}. The minimum point of

Table 1: For the distributed linear regression problem, our algorithm’s
outputs with gradient-filters CGE and CWTM, and the approximation
errors, corresponding to executions when the faulty agent 1 exhibits
two different types of Byzantine faults; gradient-reverse and random.

gradient-reverse random

𝑥out dist (𝑥H, 𝑥out) 𝑥out dist (𝑥H, 𝑥out)

CGE

(
1.0541

0.9826

)
0.0239

(
1.0779

0.9826

)
4.72 × 10

−5

CWTM

(
1.0645

0.9924

)
0.0167

(
1.0775

0.9840

)
1.51 × 10

−3

∑
𝑖∈H 𝑄𝑖 (𝑥), denoted by 𝑥H , can be obtained by solving 𝐵H =

𝐴H𝑥 . Specifically,𝑥H = (1.0780, 0.9825)𝑇 . The goal of fault-tolerant
distributed linear regression is to estimate 𝑥H . In our simulations,

it can be verified that the agents’ cost functions satisfy the (2𝑓 , 𝜖)-
redundancy property, stated in Definition 3, with 𝜖 = 0.0890. It can

also be verified that the non-faulty agents’ cost functions satisfy

Assumptions 2 and 3 with ` = 2 and 𝛾 = 0.712, respectively. We

simulate the following fault behaviors for the Byzantine agents:

• gradient-reverse: the faulty agent reverses its true gradient.
Suppose the correct gradient of a faulty agent 𝑖 at step 𝑡 is

𝑠𝑡
𝑖
, the agent 𝑖 will send the incorrect gradient 𝑔𝑡

𝑖
= −𝑠𝑡

𝑖
to

the server.

• random: the faulty agent sends a randomly chosen vector in

R𝑑 . In our experiments, the faulty agent in each step chooses

i.i.d. Gaussian random vector with mean 0 and an isotropic

covariance matrix of standard deviation 200.

In the simulations, we apply a diminishing step size [𝑡 , and a

convex compact W as described in previous sections. For com-

parison purpose, all experiments have the same initial estimate

𝑥0 = (−0.0085,−0.5643)𝑇 . In every execution, the estimates practi-

cally converge after 400 iterations. Thus, we document the output

of the algorithm to be 𝑥out = 𝑥500. The outputs for the two gradient-

filters, CGE and CWTM, under different faulty behaviors, are shown

in Table 1. Note that dist (𝑥H, 𝑥out) = ∥𝑥H − 𝑥out∥. In all the exe-

cutions, the distance between ∥𝑥H − 𝑥out∥ < 𝜖 .

For the said executions, we plot in Figure 2 the values of the

aggregate cost function

∑
𝑖∈H 𝑄𝑖 (𝑥𝑡) (referred as loss) and the ap-

proximation error

𝑥𝑡 − 𝑥H

(referred as distance) for iteration 𝑡

ranging from 0 to 500. We also show the plots of the fault-free DGD

method where the faulty agent is omitted, and the DGD method

without any gradient-filter when agent 1 is Byzantine faulty. The

details for iteration 𝑡 ranging from 0 to 80 are also highlighted in

Figure 3.

We also conducted experiments for distributed learning with

support vector machine with faulty agents in the distributed learn-

ing system (see Section 1.3). We observed that the DGD method

with the said gradient-filters reaches comparable performance to

the fault-free case, and that the accuracy of the learning process

depends upon the correlation between the data points of non-faulty

agents. For details of those results, please refer to the full version

of this paper on arXiv.

0.0

0.2

0.4

0.6

0.8

lo
ss

0.0

0.2

0.4

0.6

0.8

0 100 200 300 400 500
step

(a) gradient-reverse

0.0

0.5

1.0

1.5

d
is

ta
n

ce

1.14e-03

1.65e-02
7.33e-04

1.46e+00

0 100 200 300 400 500
step

(b) random

0.0

0.5

1.0

1.5

1.14e-03

3.90e-04

2.49e-04

1.46e+00

fault-free CWTM CGE plain GD

Figure 2: The losses, i.e.,
∑

𝑖∈H 𝑄𝑖 (𝑥𝑡) , and distances, i.e.,
𝑥𝑡 − 𝑥H

, versus
the number of iterations in the algorithm. The final approximation errors, i.e.,𝑥500 − 𝑥H

, are annotated in the same colors of their corresponding plots. For
the executions shown, agent 1 is assumed to be Byzantine faulty. The different
columns show the results when the faulty agent exhibits the different types of
faults: (a) gradient-reverse, and (b) random. Apart from the plots with CGE
(in green) and CWTM (in yellow) gradient-filters, we also plot the fault-free
DGD method where the faulty agent is omitted (in blue), and the DGD method
without any gradient-filters when agent 1 is Byzantine faulty (in red).

0.0

0.2

0.4

0.6

0.8

lo
ss

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80
step

(a) gradient-reverse

0.0

0.5

1.0

1.5

d
is

ta
n

ce

0 20 40 60 80
step

(b) random

0.0

0.5

1.0

1.5

fault-free CWTM CGE plain GD

Figure 3: The losses, i.e.,
∑

𝑖∈H 𝑄𝑖 (𝑥𝑡) , and distances, i.e.,
𝑥𝑡 − 𝑥H

, versus
the number of iterations in the algorithm, magnified for the initial 80 iterations
in the training process. The interpretation of the plots is same as that in Figure 2.

6 SUMMARY

We have considered the problem of approximate Byzantine fault-
tolerance – a generalization of the exact fault-tolerance problem
studied in prior work [24]. Unlike the exact fault-tolerance, the

goal in approximate fault-tolerance is to design a distributed op-

timization algorithm that approximates a minimum point of the

aggregate cost function of (at least 𝑛 − 𝑓) non-faulty agents, in the

presence of up to 𝑓 (out of 𝑛) Byzantine faulty agents. We have

defined approximate fault-tolerance formally as (𝑓 , 𝜖)-resilience
where 𝜖 ∈ R≥0 represents the approximation error. In the first

part of the paper, i.e, Section 3, we have obtained necessary and

sufficient conditions for achieving (𝑓 , 𝜖)-resilience. In the second

part of the paper, i.e., Sections 4 and 5, we have considered the

case when agents’ cost functions are differentiable. In this particu-

lar case, we have obtained a generic approximate fault-tolerance

property of the distributed gradient-descent method equipped with

Byzantine robust gradient aggregation or gradient-filter, and have

demonstrated the utility of this property by considering two specific

well-known gradient-filters; comparative gradient elimination and

coordinate-wise trimmed mean. In Section 5, we have demonstrated

the applicability of our results through experiments.

ACKNOWLEDGMENTS

Research reported in this paper was supported in part by the Army

Research Laboratory under Cooperative Agreement W911NF- 17-

2-0196, and by the National Science Foundation award 1842198.

The views and conclusions contained in this document are those

of the authors and should not be interpreted as representing the

official policies, either expressed or implied, of the Army Research

Laboratory, National Science Foundation or the U.S. Government.

Research reported in this paper is also supported in part by a Fritz

Fellowship from Georgetown University.

REFERENCES

[1] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. 2018. Byzantine Stochastic Gra-

dient Descent. In Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),

Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/

a07c2f3b3b907aaf8436a26c6d77f0a2-Paper.pdf

[2] Takeshi Amemiya. 1985. Advanced econometrics. Harvard university press.

[3] Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, andAnimaAnandkumar.

2019. signSGDwith Majority Vote is Communication Efficient And Fault Tolerant.

arXiv:cs.DC/1810.05291

[4] Dimitri P Bertsekas and John N Tsitsiklis. 1989. Parallel and distributed computa-
tion: numerical methods. Vol. 23. Prentice hall Englewood Cliffs, NJ.

[5] Kush Bhatia, Prateek Jain, and Purushottam Kar. 2015. Robust Regression via

Hard Thresholding. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1 (NIPS’15). MIT Press, Cambridge, MA,

USA, 721–729.

[6] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. 2017.

Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. In

Proceedings of the 31st International Conference on Neural Information Processing
Systems (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 118–128.

[7] Léon Bottou, Frank E Curtis, and Jorge Nocedal. 2018. Optimization methods for

large-scale machine learning. Siam Review 60, 2 (2018), 223–311.

[8] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011.

Distributed Optimization and Statistical Learning via the Alternating Direction

Method of Multipliers. Foundations and Trends in Machine Learning 3, 1 (Jan.

2011), 1–122.

[9] Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge

university press.

[10] Xinyang Cao and Lifeng Lai. 2019. Distributed gradient descent algorithm robust

to an arbitrary number of byzantine attackers. IEEE Transactions on Signal
Processing 67, 22 (2019), 5850–5864.

[11] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. 2017. Learning from

Untrusted Data. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing (STOC 2017). Association for Computing Machinery, New

York, NY, USA, 47–60. https://doi.org/10.1145/3055399.3055491

[12] Yuan Chen, Soummya Kar, and José M. F. Moura. 2018. Resilient Distributed

Estimation Through Adversary Detection. IEEE Transactions on Signal Processing

https://proceedings.neurips.cc/paper/2018/file/a07c2f3b3b907aaf8436a26c6d77f0a2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a07c2f3b3b907aaf8436a26c6d77f0a2-Paper.pdf
https://arxiv.org/abs/cs.DC/1810.05291
https://doi.org/10.1145/3055399.3055491

66, 9 (2018), 2455–2469.

[13] Yudong Chen, Lili Su, and Jiaming Xu. 2017. Distributed statistical machine

learning in adversarial settings: Byzantine gradient descent. Proceedings of the
ACM on Measurement and Analysis of Computing Systems 1, 2 (2017), 44.

[14] Michelle S Chong, Masashi Wakaiki, and Joao P Hespanha. 2015. Observability

of linear systems under adversarial attacks. In American Control Conference. IEEE,
2439–2444.

[15] Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui, Rhicheek Patra,

and Mahsa Taziki. 2018. Asynchronous Byzantine Machine Learning (the case of

SGD). In Proceedings of the 35th International Conference on Machine Learning
(Proceedings ofMachine Learning Research), Jennifer Dy andAndreas Krause (Eds.),
Vol. 80. PMLR, 1145–1154. http://proceedings.mlr.press/v80/damaskinos18a.html

[16] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Jacob Steinhardt,

and Alistair Stewart. 2019. Sever: A Robust Meta-Algorithm for Stochastic

Optimization. arXiv:cs.LG/1803.02815

[17] John C Duchi, Alekh Agarwal, and Martin J Wainwright. 2011. Dual averaging

for distributed optimization: Convergence analysis and network scaling. IEEE
Transactions on Automatic control 57, 3 (2011), 592–606.

[18] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. 2018. The Hidden

Vulnerability of Distributed Learning in Byzantium. In Proceedings of the 35th
International Conference on Machine Learning (Proceedings of Machine Learning
Research), Jennifer Dy and Andreas Krause (Eds.), Vol. 80. PMLR, 3521–3530.

http://proceedings.mlr.press/v80/mhamdi18a.html

[19] Hamza Fawzi, Paulo Tabuada, and Suhas Diggavi. 2014. Secure estimation and

control for cyber-physical systems under adversarial attacks. IEEE Transactions
on Automatic control 59, 6 (2014), 1454–1467.

[20] Jiashi Feng, Huan Xu, and Shie Mannor. 2015. Distributed Robust Learning.

arXiv:stat.ML/1409.5937

[21] Nirupam Gupta, Shuo Liu, and Nitin H. Vaidya. 2021. Byzantine Fault-Tolerant

Distributed Machine Learning Using Stochastic Gradient Descent (SGD) and

Norm-Based Comparative Gradient Elimination (CGE). arXiv:cs.LG/2008.04699

[22] Nirupam Gupta and Nitin H. Vaidya. 2019. Byzantine Fault Tolerant Distributed

Linear Regression. arXiv:cs.LG/1903.08752

[23] Nirupam Gupta and Nitin H. Vaidya. 2019. Byzantine Fault-Tolerant Parallelized

Stochastic Gradient Descent for Linear Regression. In 2019 57th Annual Allerton
Conference on Communication, Control, and Computing (Allerton). IEEE, 415–420.
https://doi.org/10.1109/ALLERTON.2019.8919735

[24] Nirupam Gupta and Nitin H. Vaidya. 2020. Fault-Tolerance in Distributed Op-

timization: The Case of Redundancy. In Proceedings of the 39th Symposium on
Principles of Distributed Computing (PODC ’20). Association for Computing Ma-

chinery, New York, NY, USA, 365–374. https://doi.org/10.1145/3382734.3405748

[25] Nirupam Gupta and Nitin H. Vaidya. 2020. Resilience in Collaborative Optimiza-

tion: Redundant and Independent Cost Functions. arXiv:cs.DC/2003.09675

[26] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. 2020. Learning from History

for Byzantine Robust Optimization. arXiv:cs.LG/2012.10333

[27] Kananart Kuwaranancharoen, Lei Xin, and Shreyas Sundaram. 2020. Byzantine-

resilient distributed optimization of multi-dimensional functions. In 2020 Ameri-
can Control Conference (ACC). IEEE, 4399–4404.

[28] Leslie Lamport, Robert Shostak, and Marshall Pease. 2019. The Byzantine Generals
Problem. Association for Computing Machinery, New York, NY, USA, 203–226.

[29] Shuo Liu, Nirupam Gupta, and Nitin H. Vaidya. 2021. Approximate Byzantine

Fault-Tolerance in Distributed Optimization. arXiv:cs.DC/2101.09337

[30] Nancy A Lynch. 1996. Distributed algorithms. Elsevier.
[31] Shaunak Mishra, Yasser Shoukry, Nikhil Karamchandani, Suhas N Diggavi, and

Paulo Tabuada. 2016. Secure state estimation against sensor attacks in the

presence of noise. IEEE Transactions on Control of Network Systems 4, 1 (2016),
49–59.

[32] James R Munkres. 2000. Topology. Prentice Hall Upper Saddle River, NJ.
[33] Angelia Nedic and Asuman Ozdaglar. 2009. Distributed Subgradient Methods for

Multi-Agent Optimization. IEEE Trans. Automat. Control 54, 1 (2009), 48–61.
[34] Miroslav Pajic, Insup Lee, and George J Pappas. 2017. Attack-resilient state

estimation for noisy dynamical systems. IEEE Transactions on Control of Network
Systems 4, 1 (2017), 82–92.

[35] Miroslav Pajic, James Weimer, Nicola Bezzo, Paulo Tabuada, Oleg Sokolsky, Insup

Lee, and George J Pappas. 2014. Robustness of attack-resilient state estimators.

In ICCPS’14: ACM/IEEE 5th International Conference on Cyber-Physical Systems
(with CPS Week 2014). IEEE, 163–174.

[36] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep

Ravikumar. 2018. Robust Estimation via Robust Gradient Estimation.

arXiv:stat.ML/1802.06485

[37] Michael Rabbat and Robert Nowak. 2004. Distributed optimization in sensor net-

works. In Proceedings of the 3rd international symposium on Information processing
in sensor networks. IEEE, 20–27.

[38] Robin L Raffard, Claire J Tomlin, and Stephen P Boyd. 2004. Distributed opti-

mization for cooperative agents: Application to formation flight. In 2004 43rd
IEEE Conference on Decision and Control (CDC), Vol. 3. IEEE, 2453–2459.

[39] Yasser Shoukry, Pierluigi Nuzzo, Alberto Puggelli, Alberto L Sangiovanni-

Vincentelli, Sanjit A Seshia, Mani Srivastava, and Paulo Tabuada. 2015. Imhotep-

SMT: A satisfiability modulo theory solver for secure state estimation. In Proc.
Int. Workshop on Satisfiability Modulo Theories.

[40] Yasser Shoukry, Pierluigi Nuzzo, Alberto Puggelli, Alberto L Sangiovanni-

Vincentelli, Sanjit A Seshia, and Paulo Tabuada. 2017. Secure state estimation

for cyber-physical systems under sensor attacks: A satisfiability modulo theory

approach. IEEE Trans. Automat. Control 62, 10 (2017), 4917–4932.
[41] Jacob Steinhardt, Moses Charikar, and Gregory Valiant. 2017. Resilience: A Crite-

rion for Learning in the Presence of Arbitrary Outliers. arXiv:cs.LG/1703.04940

[42] Lili Su and Shahin Shahrampour. 2018. Finite-time Guarantees for

Byzantine-Resilient Distributed State Estimation with Noisy Measurements.

arXiv:cs.SY/1810.10086

[43] Lili Su and Nitin H. Vaidya. 2016. Fault-Tolerant Multi-Agent Optimization: Opti-

mal Iterative Distributed Algorithms (PODC ’16). Association for Computing Ma-

chinery, New York, NY, USA, 425–434. https://doi.org/10.1145/2933057.2933105

[44] Lili Su and Nitin H. Vaidya. 2016. Non-Bayesian Learning in the Presence of

Byzantine Agents. In Distributed Computing. Springer Berlin Heidelberg, Berlin,

Heidelberg, 414–427.

[45] Lili Su and Nitin H. Vaidya. 2021. Byzantine-Resilient Multiagent Optimization.

IEEE Trans. Automat. Control 66, 5 (2021), 2227–2233.
[46] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. 2018. Generalized Byzantine-

tolerant SGD. arXiv:cs.DC/1802.10116

[47] Zhixiong Yang and Waheed U. Bajwa. 2017. ByRDiE: Byzantine-resilient dis-

tributed coordinate descent for decentralized learning. arXiv:cs.LG/1708.08155

[48] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.

Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. In

Proceedings of the 35th International Conference on Machine Learning (Proceedings
of Machine Learning Research), Jennifer Dy and Andreas Krause (Eds.), Vol. 80.

PMLR, 5650–5659. http://proceedings.mlr.press/v80/yin18a.html

http://proceedings.mlr.press/v80/damaskinos18a.html
https://arxiv.org/abs/cs.LG/1803.02815
http://proceedings.mlr.press/v80/mhamdi18a.html
https://arxiv.org/abs/stat.ML/1409.5937
https://arxiv.org/abs/cs.LG/2008.04699
https://arxiv.org/abs/cs.LG/1903.08752
https://doi.org/10.1109/ALLERTON.2019.8919735
https://doi.org/10.1145/3382734.3405748
https://arxiv.org/abs/cs.DC/2003.09675
https://arxiv.org/abs/cs.LG/2012.10333
https://arxiv.org/abs/cs.DC/2101.09337
https://arxiv.org/abs/stat.ML/1802.06485
https://arxiv.org/abs/cs.LG/1703.04940
https://arxiv.org/abs/cs.SY/1810.10086
https://doi.org/10.1145/2933057.2933105
https://arxiv.org/abs/cs.DC/1802.10116
https://arxiv.org/abs/cs.LG/1708.08155
http://proceedings.mlr.press/v80/yin18a.html

	Abstract
	1 Introduction
	1.1 Background: Exact Fault-Tolerance
	1.2 (f,)-Resilience: A Relaxation of Exact Fault-Tolerance
	1.3 Applications
	1.4 System architecture
	1.5 Summary of Our Contributions

	2 Other Related Work
	2.1 Alternate Notions of Approximation in Fault-Tolerance
	2.2 Gradient-Filters
	2.3 Robust Statistics with Arbitrary Outliers
	2.4 Fault-tolerance in State Estimation

	3 Necessary and Sufficient Conditions for (f,)-Resilience
	3.1 Necessary Condition
	3.2 Sufficient Condition

	4 Distributed Gradient-Descent (DGD) Method
	4.1 Steps in t-th iteration
	4.2 Gradient-Filters and their Fault-Tolerance Properties

	5 Numerical Experiments
	6 Summary
	Acknowledgments
	References

