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ABSTRACT
This paper considers the problem of resilient distributed optimiza-

tion and stochastic learning in a server-based architecture. The

system comprises a server and multiple agents, where each agent

has its own local cost function. The agents collaborate with the

server to find a minimum of the aggregate of the local cost func-

tions. In the context of stochastic learning, the local cost of an

agent is the loss function computed over the data at that agent. In

this paper, we consider this problem in a system wherein some of

the agents may be Byzantine faulty and some of the agents may

be slow (also called stragglers). In this setting, we investigate the

conditions under which it is possible to obtain an “approximate”

solution to the above problem. In particular, we introduce the no-

tion of (𝑓 , 𝑟 ; 𝜖)-resilience to characterize how well the true solution

is approximated in the presence of up to 𝑓 Byzantine faulty agents,

and up to 𝑟 slow agents (or stragglers) – smaller 𝜖 represents a

better approximation. We also introduce a measure named (𝑓 , 𝑟 ; 𝜖)-
redundancy to characterize the redundancy in the cost functions of

the agents. Greater redundancy allows for a better approximation

when solving the problem of aggregate cost minimization.

In this paper, we constructively show (both theoretically and

empirically) that (𝑓 , 𝑟 ;O(𝜖))-resilience can indeed be achieved in

practice, given that the local cost functions are sufficiently redun-

dant. Our empirical evaluation considers a distributed gradient

descent (DGD)-based solution; for distributed learning in the pres-

ence of Byzantine and asynchronous agents, we also evaluate a

distributed stochastic gradient descent (D-SGD)-based algorithm.
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1 INTRODUCTION
With the rapid growth in the computational power of modern com-

puter systems and the scale of optimization tasks, e.g., training of

deep neural networks [39], the problem of distributed optimization

in a multi-agent system has gained significant attention in recent

years. This paper considers the problem of resilient distributed
optimization and stochastic learning in a server-based architecture.

The system under consideration consists of a trusted server and

multiple agents, where each agent has its own “local” cost func-

tion. The agents collaborate with the server to find a minimum of

the aggregate cost functions (i.e., the aggregate of the local cost

functions) [9]. Specifically, suppose that there are 𝑛 agents in the

system where each agent 𝑖 has a cost function 𝑄𝑖 : R
𝑑 → R. The

goal then is to enable the agents to compute a global minimum 𝑥∗

such that

𝑥∗ ∈ arg min

𝑥∈R𝑑

𝑛∑︁
𝑖=1

𝑄𝑖 (𝑥) . (1)

As a simple example, consider a group of 𝑛 people that want to pick

a place for a meeting. Suppose that function 𝑄𝑖 (𝑥) represents the
cost for the 𝑖-th person (agent) to travel to location 𝑥 , 𝑥 being its

coordinates. Then, 𝑥∗ ∈ argmin𝑥∈R𝑑
∑𝑛
𝑖=1𝑄𝑖 (𝑥) is a location such

that the travel cost of meeting at 𝑥∗, when aggregated over all the

agents, is the smallest possible. In the context of training of a deep

neural network, 𝑄𝑖 (𝑥) represents the loss function corresponding

to the data at agent 𝑖 when using machine parameter vector 𝑥 .

Thus, our results are relevant in the context of distributed machine

learning [9]. The above multi-agent optimization problem has many

other applications as well, including distributed sensing [41], and

swarm robotics [42].

Such distributed multi-agent systems may encounter some chal-

lenges in practice. We consider two challenges in this paper:

• Byzantine faulty agents: A Byzantine faulty [28] agent may

share wrong information with the server, or not send any

information at all. The Byzantine fault model [28] does not

impose any constraints on the behavior of a faulty agent.

An agent’s faulty behavior may occur either due to soft-

ware/hardware failure or due to a security compromise of

the agent. Prior work has shown that even a single faulty

agent can compromise the entire distributed optimization

process [49].

https://doi.org/10.1145/3571306.3571393
https://doi.org/10.1145/3571306.3571393
https://doi.org/10.1145/3571306.3571393


ICDCN 2023, January 4–7, 2023, Kharagpur, India Shuo Liu, Nirupam Gupta, and Nitin H. Vaidya

• Slow agents (Stragglers): Stragglers are agents that operate
much more slowly than the other agents. Synchronous algo-

rithms that require each agent to communicate with the

server in each “round” of the computation can perform

poorly, since the stragglers will slow down the progress

of the computation [4, 21, 30].

The related work is discussed in more detail in Section 2. Recall the

travel and meeting example in the previous paragraph. A “faulty”

people may deliberately send a wrong cost function so that the

minimum would be his desired place; while a “straggler” may be

unresponsive, delaying everyone from reaching a decision. The

above two challenges have been considered independently in the

past work [5, 10, 20, 23, 35, 38, 50]. This paper makes contribu-

tions that further our understanding of distributed optimization

algorithms that are resilient to both the forms of adversities above.

1.1 Contributions of this paper
It is known that, under the above adverse conditions, it is not

always possible to solve the problem of interest exactly. This paper

addresses the interaction between these two forms of adversities.

In particular, we consider a multi-agent system with up to 𝑓 faulty

agents and up to 𝑟 stragglers (or slow agents) out of 𝑛 agents. It is

possible that the same agent may be faulty and slow both. LetH
denote the set of non-faulty (or honest) agents in a given execution.

In this paper, we consider the Resilient Distributed Optimization
(RDO) problem, with the goal of approximately computing

arg min

𝑥∈R𝑑

∑︁
𝑖∈H

𝑄𝑖 (𝑥) (2)

in the presence of up to 𝑓 Byzantine faulty agents and up to 𝑟 slow

agents. For the problem to be solvable, we assume that 𝑛 > 2𝑓 + 𝑟 .
Previous research has established that Byzantine fault-tolerance

problem is solvable when the non-faulty agents dominates the

set of agents, or 𝑛 > 2𝑓 [35]; we also need enough agents to be

synchronous for the problem to be solvable.

We characterize how well the true solution of (2) can be ap-

proximated, as a function of the level of “redundancy” in the cost

functions. As a trivial example, if all the agents have an identical

cost function, then (2) can be obtained by simply taking a majority

vote on the outcome of local cost function optimization performed

by each agent separately. In general, such a high degree of redun-

dancy may not be available, and only an approximate solution of (2)

may be obtainable. We introduce the notion of (𝑓 , 𝑟 ; 𝜖)-resilience to
characterize how well the true solution is approximated in the pres-

ence of up to 𝑓 Byzantine faulty agents, and up to 𝑟 slow agents (or

stragglers) – smaller 𝜖 represents a better approximation. We also

introduce a measure named (𝑓 , 𝑟 ; 𝜖)-redundancy to characterize

the redundancy in the cost functions of the agents. Greater redun-

dancy allows a better approximation when solving the problem of

aggregate cost minimization.

We constructively show (both theoretically and empirically) that

(𝑓 , 𝑟 ;O(𝜖))-resilience can indeed be achieved in practice, provided

that the local cost functions are sufficiently redundant. Our empiri-

cal evaluation considers a distributed gradient descent (DGD)-based

solution; in particular, for distributed learning in the presence of

Byzantine and asynchronous agents, we evaluate a distributed sto-

chastic gradient descent (D-SGD)-based algorithm.

1.2 (𝑓 , 𝑟 ; 𝜖)-resilience and (𝑓 , 𝑟 ; 𝜖)-redundancy
1.2.1 Euclidean and Hausdorff Distance. To help define the notions
of (𝑓 , 𝑟 ; 𝜖)-resilience and (𝑓 , 𝑟 ; 𝜖)-redundancy, we will use Euclidean
and Hausdorff distance measures. Let ∥·∥ represents the Euclidean
norm. Then Euclidean distance between points 𝑥 and𝑦 in R𝑑 equals

∥𝑥 − 𝑦∥. The Euclidean distance between a point 𝑥 and a set 𝑌 in

R𝑑 , denoted by dist (𝑥, 𝑌 ), is defined as:

dist (𝑥, 𝑌 ) = inf

𝑦∈𝑌
dist (𝑥, 𝑦) = inf

𝑦∈𝑌
∥𝑥 − 𝑦∥ .

The Hausdorff distance between two sets 𝑋 and 𝑌 in R𝑑 , denoted
by dist (𝑋, 𝑌 ), is defined as:

dist (𝑋, 𝑌 ) ≜ max

{
sup

𝑥∈𝑋
dist (𝑥, 𝑌 ) , sup

𝑦∈𝑌
dist (𝑦, 𝑋 )

}
.

1.2.2 Define (𝑓 , 𝑟 ; 𝜖)-resilience and (𝑓 , 𝑟 ; 𝜖)-redundancy. We now

define the notion of (𝑓 , 𝑟 ; 𝜖)-resilience to characterize how closely

(2) is approximated by a given RDO algorithm (the definition below

denotes by 𝑥 the output produced by the RDO algorithm).

Definition 1 ((𝑓 , 𝑟 ; 𝜖)-resilience). For 𝜖 ≥ 0, a distributed
optimization algorithm is said to be (𝑓 , 𝑟 ; 𝜖)-resilient if its output 𝑥
satisfies

dist

(
𝑥, arg min

𝑥∈R𝑑

∑︁
𝑖∈H

𝑄𝑖 (𝑥)
)
≤ 𝜖

for each set H of 𝑛 − 𝑓 non-faulty agents, despite the presence of up
to 𝑓 faulty agents and up to 𝑟 stragglers.

This resilience notion captures how well a given RDO algorithm

performs in terms of approximating the solution of (2). Observe

that the above definition considers the distance of 𝑥 (i.e., the output

of the given RDO algorithm) from the true solution for every sub-

problem corresponding to 𝑛 − 𝑓 non-faulty agents. Intuitively, the

reason is as follows: Consider the case when the faulty agents

behave badly in a manner that is not detectable – that is, by simply

looking at the information received from the faulty agents, the

trusted server cannot determine if they are faulty. Thus, it is difficult

to know how many agents are faulty. In particular, it is possible

that exactly 𝑛 − 𝑓 agents are non-faulty, with the rest being faulty.

Therefore, intuitively, we want 𝑥 to be within 𝜖 of the true solution

that minimizes the aggregate cost over any 𝑛 − 𝑓 non-faulty agents.

In this paper, we show how the redundancy in agents’ cost func-

tions can be utilized to obtain (𝑓 , 𝑟 ; 𝜖)-resilience. Formally, we de-

fine the property as (𝑓 , 𝑟 ; 𝜖)-redundancy, stated below.

Definition 2 ((𝑓 , 𝑟 ; 𝜖)-redundancy). For 𝜖 ≥ 0, the agents’ local
cost functions are said to satisfy the (𝑓 , 𝑟 ; 𝜖)-redundancy property if
and only if for every pair of subsets of agents 𝑆, 𝑆 ⊊ {1, ..., 𝑛}, where
|𝑆 | = 𝑛 − 𝑓 ,

���𝑆 ��� ≥ 𝑛 − 𝑟 − 2𝑓 and 𝑆 ⊊ 𝑆 ,

dist
©­«argmin

𝑥

∑︁
𝑖∈𝑆

𝑄𝑖 (𝑥), argmin

𝑥

∑︁
𝑖∈𝑆

𝑄𝑖 (𝑥)ª®¬ ≤ 𝜖.

The (𝑓 , 𝑟 ; 𝜖)-redundancy condition also characterizes the trade-

off between parameters 𝑓 , 𝑟 and 𝜖 . In particular, for any set of local

cost functions (i.e., 𝑄𝑖 (𝑥)’s), and for any 𝑟 < 𝑛 and 𝑓 < (𝑛 − 𝑟 )/2,
there exists some 𝜖 such that the agents’ cost functions satisfy the
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Figure 1: Trade-off between 𝜖, 𝑓 and 𝑟 for the numerical ex-
ample in Section 5. The total number of agents 𝑛 = 10.

Table 1: Problem space of solving RDO using resilience in
cost functions.

Deterministic / Stochastic Synchronous Asynchronous

Fault-free - Sec. 3.2.1 / Sec. 4.1.2

With Byzantine agents [19, 35] / Sec. 4.1.1 Sec. 3.1 / Sec. 4

(𝑓 , 𝑟 ; 𝜖)-redundancy property for that 𝜖 value. For a given set of

local cost functions,

• With a fixed value of 𝑓 , larger 𝑟 results in larger 𝜖 .

• With a fixed value of 𝑟 , larger 𝑓 results larger 𝜖 .

Thus, the notion of (𝑓 , 𝑟 ; 𝜖)-redundancy is a description of the redun-
dancy in the cost functions. Note that for a given set of functions,

we always consider the smallest 𝜖 for which redundancy condition

holds. We will discuss a numerical example of distributed linear

regression in Section 5. For this example, Figure 1 shows the rela-

tionship between 𝜖 , 𝑓 and 𝑟 . Each curve in Figure 1 corresponds

to a fixed value of 𝑓 . The horizontal axis varies parameter 𝑟 . The

corresponding value of 𝜖 , plotted on the vertical axis, illustrates the

trade-off discussed above.

In the context of solving RDO problems with resilience in cost

functions defined above, there are several special cases that have

been solved in previous work. The current status of the problem

space is shown in Table 1. There are three dimensions: determin-

istic vs. stochastic, synchronous vs. asynchronous, and fault-free

vs. Byzantine agents in presence. We provide analysis from the

redundancy-in-cost-function perspective for all remaining prob-

lems, as indicated in Table 1, showing that redundancy alone can

be utilized to solve RDO problems.

1.3 Paper Outline
The relatedwork is discussed inmore detail in Section 2. In Section 3,

we propose a gradient-based algorithm framework that can be used

to solve the RDO problems in practice, and analyze its resilience

under various settings, while utilizing the redundancy property of

the local cost functions. In Section 4, we adapt the proposed frame-

work to solve resilient distributed stochastic optimization problems,
which has relevance in distributed machine learning, and present

convergence results for the stochastic algorithm. To validate our

theoretical findings, we present empirical results in Section 5.

The proofs of theoretical results in this paper are provided in

our report [36] on arXiv.

2 RELATEDWORK
Byzantine fault-tolerant optimization. Byzantine agents make it

difficult to achieve the goal of distributed optimization (1) [5, 48].

Various methods have been proposed to solve Byzantine fault-

tolerant optimization or learning problems [34], including robust

gradient aggregation [5, 11], gradient coding [10], and other meth-

ods [18, 54, 57].

In general, instead of solving the problem exactly, an approxi-

mate solution may be found. In some cases, however, exact solution

is feasible. For instance, when every agent has the same (identi-

cal) cost function, it is easy to see that an exact solution may be

obtained via majority vote on the output of the agents, so long

as only a minority of the agents are faulty. Stochastic versions of

distributed optimization algorithms are also proposed to exploit

such forms of redundancy in the context of distributed machine

learning (e.g, [5, 11]). [19] obtained conditions under which it is

possible to tolerate 𝑓 Byzantine agents in a synchronous system
and yet obtain accurate solution for the optimization problem. [35]

obtained a condition under which approximately correct outcome

can be obtained in a synchronous system.

The contribution of this paper is to generalize the results in

[19, 35] to a system that allows some asynchrony in the form of

stragglers – allowing for stragglers makes the proposed approach

more useful in practice; we also discuss deterministic and stochastic

methods at the same time, closing all remaining gaps in the con-

text of solving resilient distributed optimization problem through

redundancy in cost functions.

Asynchronous optimization. For fault-free systems (i.e., in the

absence of failures), there is past work addressing distributed op-

timization under asynchrony. Prior work shows that distributed

optimization problems can be solved using stale gradients with a

constant delay (e.g., [29]) or bounded delay (e.g., [1, 16]). Methods

such as Hogwild! allow lock-free updates in shared memory [38].

Other works use variance reduction and incremental aggregation

methods to improve the convergence rate [15, 22, 43, 45].

Coding has been used to mitigate the effect of stragglers or fail-

ures [23, 24, 32, 56]. Tandon et al. [50] proposed a framework us-

ing maximum-distance separable coding across gradients to toler-

ate failures and stragglers. Similarly, Halbawi et al. [20] adopted

coding to construct a coding scheme with a time-efficient online

decoder. Karakus et al. [25] proposed an encoding distributed op-

timization framework with deterministic convergence guarantee.

Other replication- or repetition-based techniques involve either

task-rescheduling or assigning the same tasks to multiple nodes [3,

17, 44, 52, 55]. These previous methods rely on algorithm-created re-

dundancy of data or gradients to achieve robustness, while (𝑓 , 𝑟 ; 𝜖)-
redundancy can be a property of the cost functions themselves,

allowing us to exploit such redundancy without extra effort.

3 ALGORITHMIC FRAMEWORK FOR
RESILIENT DISTRIBUTED OPTIMIZATION
PROBLEMS

From now on, we use [𝑛] as a shorthand for the set {1, ..., 𝑛}. In this

section, we study the resilience of a class of distributed gradient

descent (DGD)-based algorithms. In the algorithms considered here,
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a server maintains an estimate for the optimum. In each iteration

of the algorithm, the server sends its estimate to the agents, and

the agents send the gradients of their local cost functions at that

estimate to the server. The server uses these gradients to update

the estimate.

Specifically, Algorithm 1 is a framework for several instances of

the RDO algorithms presented later in this paper. Different instances

of the algorithm differ in the manner in which the iterative update

(3) is performed at the server – different gradient aggregation rules

are used in different instances of the RDO algorithm.

Algorithm 1: Resilient distributed gradient descent under

(𝑓 , 𝑟 ; 𝜖)-redundancy
Input: 𝑛, 𝑓 , 𝑟 , 𝜖 . A convex compact set W. Each agent 𝑖 has

its cost function 𝑄𝑖 (𝑥).
The initial estimate of the optimum, 𝑥0∈ W, is chosen by

the server. The new estimate 𝑥𝑡+1 is computed in iteration

𝑡 ≥ 0 as follows:

Step 1: The server requests each agent for the gradient of its local

cost function at the current estimate 𝑥𝑡 . Each agent 𝑗 is

expected to send to the server the gradient (or stochastic

gradient) 𝑔𝑡
𝑗
with timestamp 𝑡 .

Step 2: The server waits until it receives 𝑛 − 𝑟 gradients with the

timestamp of 𝑡 . Suppose 𝑆𝑡 ⊆ {1, ..., 𝑛} is the set of agents
whose gradients are received by the server at step 𝑡 where��𝑆𝑡 �� = 𝑛 − 𝑟 . The server updates its estimate to

𝑥𝑡+1 =
[
𝑥𝑡 − 𝜂𝑡 GradAgg

(
𝑔𝑡𝑗 | 𝑗 ∈ 𝑆𝑡 ;𝑛, 𝑓 , 𝑟

)]
W

(3)

where 𝜂𝑡 ≥ 0 is the step-size for each iteration 𝑡 , and [ · ]W
denotes a projection ontoW.

A gradient aggregation rule (GAR)

GradAgg(·;𝑛, 𝑓 , 𝑟 ) : R𝑑×(𝑛−𝑟 ) → R𝑑

is a function that takes 𝑛 − 𝑟 vectors in R𝑑 (gradients) and outputs

a vector in R𝑑 for the update, with the knowledge that there are

up to 𝑓 Byzantine faulty agents and up to 𝑟 stragglers out of the 𝑛

agents in the system. As an example, the GAR used in synchronous

distributed optimization with no faulty agents is averaging, i.e.,
GradAgg(𝑔𝑡

𝑗
| 𝑗 ∈ [𝑛];𝑛, 0, 0) = (1/𝑛)∑𝑛

𝑗=1 𝑔
𝑡
𝑗
. The fact that only

𝑛−𝑟 gradients are in use reflects the asynchrony of the optimization

process caused by stragglers, while the GAR counters the effect of

Byzantine agents and stragglers, together achieving resilience.

The compact set W is assumed to contain the true solution

to the problem. We will explain the details when introducing our

convergence analyses.

3.1 Convergence of resilient distributed
gradient descent

Recall the problem setting that in a 𝑛-agent system, there are up

to 𝑓 Byzantine agents and up to 𝑟 stragglers. With the existence of

Byzantine agents, the goal is to solve (2) (cf. Section 1). First, we

need to introduce some standard assumptions that are necessary for

our analysis. SupposeH ⊆ [𝑛] is any subset of non-faulty agents

with |H | = 𝑛 − 𝑓 .

Assumption 1. For each (non-faulty) agent 𝑖 , the function 𝑄𝑖 (𝑥)
is 𝜇-Lipschitz smooth, i.e., ∀𝑥, 𝑥 ′ ∈ R𝑑 ,

∇𝑄𝑖 (𝑥) − ∇𝑄𝑖 (𝑥 ′)



 ≤ 𝜇


𝑥 − 𝑥 ′



 . (4)

Assumption 2. For any set 𝑆 ⊆ H , we define the average cost
function to be 𝑄𝑆 (𝑥) = 1

|𝑆 |
∑

𝑗∈𝑆 𝑄 𝑗 (𝑥). We assume that 𝑄𝑆 (𝑥) is
𝛾-strongly convex for any 𝑆 subject to |𝑆 | ≥ 𝑛 − 2𝑓 , i.e., ∀𝑥, 𝑥 ′ ∈ R𝑑 ,〈

∇𝑄𝑆 (𝑥) − ∇𝑄𝑆 (𝑥 ′), 𝑥 − 𝑥 ′
〉
≥ 𝛾



𝑥 − 𝑥 ′


2 . (5)

We also need to assume that a solution to the problem exists, i.e.,

the problem is non-trivial. Specifically, for each subset of non-faulty

agents 𝑆 with |𝑆 | ≥ 𝑛 − 𝑓 , we assume that there exists a point 𝑥𝑆 ∈
argmin𝑥∈R𝑑

∑
𝑗∈𝑆 𝑄 𝑗 (𝑥) such that 𝑥𝑆 ∈ W. By Assumption 2,

there exists a unique minimum point 𝑥H ∈ W that minimize the

aggregate cost functions of agents inH , i.e.,

{𝑥H} = W ∩ argmin𝑥∈R𝑑
∑

𝑗∈H 𝑄 𝑗 (𝑥). (6)

Recall (3) in Step 2 of Algorithm 1. The GAR used for RDO

problems with up to 𝑓 Byzantine agents and up to 𝑟 stragglers is

GradAgg
(
𝑔𝑡𝑗 | 𝑗 ∈ 𝑆𝑡 ;𝑛, 𝑓 , 𝑟

)
= GradFilter

(
𝑔𝑡𝑗 | 𝑗 ∈ 𝑆𝑡 ;𝑛 − 𝑟, 𝑓

)
(7)

for every iteration 𝑡 , where GradFilter is a robust GAR, or gra-
dient filter, that enables us fault-tolerant capability [14, 26, 35].

Specifically, a gradient filter GradFilter(·;𝑚, 𝑓 ) : R𝑑×𝑚 → R𝑑 is

a function that takes 𝑚 vectors of 𝑑-dimension and outputs a 𝑑-

dimension vector given that there are up to 𝑓 Byzantine agents,

where𝑚 > 𝑓 ≥ 0. Each agent 𝑗 sends a vector

𝑔𝑡𝑗 =

{
∇𝑄 𝑗 (𝑥𝑡 ), if the agent is non-faulty,

arbitrary vector, if the agent is faulty

(8)

to the server at iteration 𝑡 .

Following the above GAR in (7), the server receives the first 𝑛−𝑟
vectors from the agents in the set 𝑆𝑡 , and sends the vectors through a

gradient filter. Nowwe present an asymptotic convergence property

of Algorithm 1.

Theorem 1. Let H be any set of 𝑛 − 𝑓 non-faulty agents in
the system. Let 𝑥H = argmin𝑥∈R𝑑

∑
𝑗∈H 𝑄 𝑗 (𝑥). Suppose that As-

sumptions 1 and 2 hold true, and the cost functions of all agents
satisfy (𝑓 , 𝑟 ; 𝜖)-redundancy. Assume that 𝜂𝑡 satisfy

∑∞
𝑡=0 𝜂𝑡 = ∞ and∑∞

𝑡=0 𝜂
2

𝑡 < ∞. Suppose that



GradAgg (

𝑔𝑡
𝑗
| 𝑗 ∈ 𝑆𝑡 ;𝑛, 𝑓 , 𝑟

)


 < ∞ for
all 𝑡 . The proposed algorithm with aggregation rule (7) satisfies the
following:

For the point 𝑥H ∈ W, if there exists a real-valued constant
D∗ ∈

[
0,max𝑥∈W



𝑥 − 𝑥H


) and 𝜉 > 0 such that for each iteration

𝑡 ,

𝜙𝑡 ≜
〈
𝑥𝑡 − 𝑥H, GradAgg

(
𝑔𝑡𝑗 | 𝑗 ∈ 𝑆𝑡 ;𝑛, 𝑓 , 𝑟

)〉
≥ 𝜉

when


𝑥𝑡 − 𝑥H



 ≥ D∗,
(9)

then lim𝑡→∞


𝑥𝑡 − 𝑥H



 ≤ D∗.

Intuitively, so long as the gradient filter in use satisfies the de-

sired properties in Theorem 1, our algorithm can tolerate up to 𝑓

Byzantine faulty agents and up to 𝑟 stragglers in distributed opti-

mization: the estimate 𝑥𝑡 will eventually be within D∗
distance OF

𝑥H , i.e., the algorithm is (𝑓 , 𝑟 ;D∗)-resilient.
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Gradient filters that satisfy condition (9) in Theorem 1 include

CGE [35] and coordinate-wise trimmed mean [35, 57]. As an exam-

ple, for the CGE gradient filter
1
, it can be shown that

𝜙𝑡 ≥ 𝛼 (𝑛 − 𝑟 )𝛾D∗ (
D∗ − D

)
> 0 when



𝑥𝑡 − 𝑥H


 ≥ D∗,

for all D∗ > D ≜
4𝜇 (𝑓 + 𝑟 )𝜖

𝛼𝛾
,

where 𝛼 =
𝑛 − 𝑓

𝑛 − 𝑟
− 2𝜇

𝛾
· 𝑓 + 𝑟
𝑛 − 𝑟

> 0,

(11)

and therefore, lim𝑡→∞


𝑥𝑡 − 𝑥H



 ≤ D∗
. Intuitively, by applying

CGE, the output of our new algorithm can converge to a 𝜖-dependent

region centered by the true minimum point 𝑥H of aggregate cost

functions of non-faulty agents, with up to 𝑓 Byzantine agents and

up to 𝑟 stragglers, i.e., Algorithm 1with CGE is (𝑓 , 𝑟 ;O(𝜖))-resilient.
For other valid gradient filters, the parameters in (11) may vary.

3.2 Special cases of RDO problems
There are several meaningful special cases of RDO problems. When

𝑓 = 𝑟 = 0, RDO degenerates to the synchronous distributed op-

timization problem with no faulty agents in the system, which

can be solved by several existing methods including DGD [9, 37,

46, 51]. When 𝑟 = 0, RDO becomes the Byzantine fault-tolerant

distributed optimization problemwe discussed in Section 2. (𝑓 , 0; 𝜖)-
redundancy is necessary to achieving (𝑓 , 0; 𝜖)-resilience [35].

3.2.1 Asynchronous distributed optimization. When 𝑓 = 0, RDO

becomes the asynchronous distributed optimization problem with

no faulty agents. As discussed in Section 2, prior research has not

considered exploiting the existing redundancy in cost functions.

When 𝑓 = 0, we haveH = [𝑛]. The goal (2) of distributed optimiza-

tion becomes (1). Recall (3) in Step 2 of Algorithm 1. We define the

GAR for asynchronous optimization to be

GradAgg
(
𝑔𝑡𝑗 | 𝑗 ∈ 𝑆𝑡 ;𝑛, 𝑓 , 𝑟

)
=

∑︁
𝑗∈𝑆𝑡

𝑔𝑡𝑗 (12)

for every iteration 𝑡 . That is, the algorithm updates the current

estimates using the sum of the first 𝑛 − 𝑟 gradients it receives. Note

that 𝑔𝑡
𝑗
= ∇𝑄 𝑗 (𝑥𝑡 ) is the full gradient. For this problem, it can be

shown for Theorem 1 that if (0, 𝑟 ; 𝜖)-redundancy is satisfied,

𝜙𝑡 ≥ 𝛼𝑛𝛾D∗ (D∗ − D) > 0 when



𝑥𝑡 − 𝑥H


 ≥ D∗,

for all D∗ > D =
2𝑟 𝜇

𝛼𝛾
𝜖,

where 𝛼 = 1 − 𝑟

𝑛
· 𝜇
𝛾

> 0,

(13)

and therefore, lim𝑡→∞


𝑥𝑡 − 𝑥H



 ≤ D∗
. By substituting (11) with

𝑓 = 0, we see that (13) is a tighter bound. Also note that there could

be other GARs for the asynchronous problem to achieve better

efficiency or further reduce computational overhead.

1
The definition of CGE is the following: in each iteration 𝑡 , sort𝑚 vectors 𝑔𝑡

𝑗
’s as


𝑔𝑡𝑖

1




 ≤



𝑔𝑡𝑖

2




 ≤ ... ≤



𝑔𝑡𝑖𝑚 


 , then we have CGE gradient filter:

GradFilterCGE (𝑔𝑡𝑗 | 𝑗 ∈ 𝑆𝑡 ;𝑚, 𝑓 ) =
𝑚−𝑓∑︁
𝑙=1

𝑔𝑡𝑖𝑙
. (10)

For asynchronous distributed optimization problem, we can also

utilize stale gradients, i.e., gradients from previous iterations to

further reduce waiting time. We define the following two sets:

during iteration 𝑡 , 𝑆𝑡 ;𝑘 denotes the set of agents from whom the

server receives gradients computed based on 𝑥𝑘 , and 𝑇 𝑡 ;𝑘
denotes

the set of agents fromwhom themost recent gradient that the server

has received is computed using 𝑥𝑘 . 𝑇 𝑡 ;𝑘
can be defined inductively:

(i) 𝑇 𝑡 ;𝑡 = 𝑆𝑡 ;𝑡 , and (ii) 𝑇 𝑡 ;𝑡−𝑖 = 𝑆𝑡 ;𝑡−𝑖\⋃𝑖−1
𝑘=0

𝑇 𝑡 ;𝑡−𝑘
, ∀𝑖 ≥ 1. Note

that the definition implies 𝑇 𝑡 ;𝑡−𝑖 ∩ 𝑇 𝑡 ;𝑡− 𝑗 = ∅ for any 𝑖 ≠ 𝑗 . Let

us further define 𝑇 𝑡 =
⋃𝜏

𝑖=0𝑇
𝑡 ;𝑡−𝑖

, where 𝜏 ≥ 0 is a predefined

straggler parameter. To use stale gradients, we define the GAR in

the iterative update (3) to be

GradAgg
(
𝑔𝑡𝑗 | 𝑗 ∈ 𝑆𝑡 ;𝑛, 𝑓 , 𝑟

)
=

𝜏∑︁
𝑖=0

∑︁
𝑗∈𝑇 𝑡 ;𝑡−𝑖

𝑔𝑡−𝑖𝑗 . (14)

With the above GAR, suppose that there exists a 𝜏 ≥ 0 such that��𝑇 𝑡
�� ≥ 𝑛 − 𝑟 for all 𝑡 , and the step sizes satisfy 𝜂𝑡 ≥ 𝜂𝑡+1 for all

𝑡 , in addition to conditions in Theorem 1, then Theorem 1 holds

with the same parameters in (13). Intuitively, this method allows

gradients of at most 𝜏-iteration stale. This result indicates that

the asymptotic resilience of the algorithm would not be affected

by stale gradients. It can be expected that with less waiting time

involved, the algorithm will be more efficient. Still, the convergence

rate (number of iterations needed to converge) will be affected by

𝜏 when stale gradients are introduced.

4 RESILIENT STOCHASTIC DISTRIBUTED
OPTIMIZATION

As mentioned briefly in Section 1, stochastic optimization is useful

when the computation of full gradients is too expensive [6–8, 47],

which is commonly used in various scenarios including machine

learning [47]. So it is worthwhile for us to also examine the poten-

tial of utilizing (𝑓 , 𝑟 ; 𝜖)-redundancy for solving resilient stochastic

distributed optimization problems.

Consider a distributed stochastic optimization problem on a 𝑑

dimensional real-valued spaceR𝑑 . Each agent 𝑖 has a data generation
distribution D𝑖 over R

𝑚
. Each data point 𝑧 ∈ R𝑚 is a real-valued

vector that incurs a loss defined by a loss function ℓ : (𝑥 ; 𝑧) ↦→ R.
The expected loss function for each agent 𝑖 can be defined as

𝑄𝑖 (𝑥) = E𝑧∼D𝑖
ℓ (𝑥 ; 𝑧), for all 𝑥 ∈ R𝑑 . (15)

With this problem formulation above, the gradient-based Algo-

rithm 1 proposed in Section 3 can also be adapted to a stochastic

version for solving various problems including resilient distributed

machine learning (RDML).

Naturally, the goal of resilient distributed stochastic optimization

is also (2), the same as RDO. For machine learning problems, the

machine learning model Π can be parameterized as a 𝑑-dimensional

vector 𝑥 ∈ R𝑑 , which is the optimization target vector.

We first briefly revisit the computation of stochastic gradients in

a distributed optimization system. To compute a stochastic gradient

in iteration 𝑡 , a (non-faulty) agent 𝑖 samples 𝑘 i.i.d. data points

𝑧𝑡
𝑖1
, ..., 𝑧𝑡

𝑖𝑘
from its distribution D𝑖 and computes

𝑔𝑡𝑖 =
1

𝑘

𝑘∑︁
𝑖=1

∇ℓ (𝑥𝑡 , 𝑧𝑡𝑖 𝑗 ), (16)
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where 𝑘 is referred to as the batch size. A faulty agent 𝑖 sends an

arbitrary vector 𝑔𝑡
𝑖
.

We will also use the following notations in this section. Suppose

faulty agents (if any) in the system are fixed during a certain ex-

ecution. For each non-faulty agent 𝑖 , let 𝒛𝑡
𝑖
=

{
𝑧𝑡
𝑖1
, ..., 𝑧𝑡

𝑖𝑘

}
denote

the collection of 𝑘 i.i.d. data points sampled by agent 𝑖 at iteration

𝑡 . For each agent 𝑖 and iteration 𝑡 , we define a random variable

𝜁 𝑡𝑖 =

{
𝒛𝑡
𝑖
, agent 𝑖 is non-faulty,

𝑔𝑡
𝑖
, agent 𝑖 is faulty.

(17)

Recall that 𝑔𝑡
𝑖
can be an arbitrary 𝑑-dimensional random variable

for each Byzantine faulty agent 𝑖 . For each iteration 𝑡 , let 𝜁 𝑡 ={
𝜁 𝑡
𝑖
, 𝑖 = 1, ..., 𝑛

}
, and let E𝑡 denote the expectation with respect to

the collective random variables 𝜁 0, ..., 𝜁 𝑡 , given the initial estimate

𝑥0. Specifically,

E𝑡 (·) = E𝜁 0,...,𝜁 𝑡 (·), ∀𝑡 ≥ 0. (18)

Similar to Section 3, we make standard Assumptions 1 and 2. We

also need an extra assumption to bound the variance of stochastic

gradients from all non-faulty agents.

Assumption 3. For each non-faulty agent 𝑖 , assume that the vari-
ance of 𝑔𝑡

𝑖
is bounded. Specifically, there exists a finite real value 𝜎

such that for each non-faulty agent 𝑖 ,

E𝜁 𝑡
𝑖




𝑔𝑡𝑖 − E𝜁 𝑡𝑖 (
𝑔𝑡𝑖

)


2 ≤ 𝜎2 . (19)

We make no assumption over the behavior of Byzantine agents.

Suppose H ⊆ [𝑛] is a subset of non-faulty agents with |H | =
𝑛− 𝑓 , and a solution 𝑥H exists inW. The following theorem shows

the general results for Resilient distributed stochastic optimization

problems. Note that here Algorithm 1 uses stochastic gradients

instead of full gradients.

Theorem 2. Consider Algorithm 1 with stochastic gradients, and
the GAR in use is the CGE gradient filter (10). Suppose Assumptions 1,
2, and 3 hold true, the expected cost functions of non-faulty agents
satisfy (𝑓 , 𝑟 ; 𝜖)-redundancy, a resilience margin 𝛼 > 0, and the step
size in (3), 𝜂𝑡 = 𝜂 > 0 for all 𝑡 . Let M denote an error-related margin.
There exists an 𝜂 such that, for 𝜂 < 𝜂, the following holds true:

• The value of a convergence rate parameter 𝜌 satisfies 0 ≤ 𝜌 <

1, and
• Given the initial estimate 𝑥0 arbitrarily chosen from R𝑑 , for
all 𝑡 ≥ 0,

E𝑡


𝑥𝑡+1 − 𝑥H



2 ≤ 𝜌𝑡+1


𝑥0 − 𝑥H



2 + 1 − 𝜌𝑡+1

1 − 𝜌
M. (20)

Let Γ = max𝑥∈W


𝑥 − 𝑥H




, we have the following parameters

when 𝑓 ≥ 0 and 𝑟 ≥ 0 for Theorem 2:

𝛼 =
𝑛 − 𝑓

𝑛 − 𝑟
− 𝑓 + 𝑟
𝑛 − 𝑟

· 2𝜇
𝛾
,

𝜂 =
2(𝑛 − 𝑟 )𝛾𝛼

(𝑛 − 𝑟 − 𝑓 )2𝜇2
,

𝜌 = 1 − 2(𝑛 − 𝑓 )𝜂𝛾 + 4(𝑓 + 𝑟 )𝜂𝜇 + (𝑛 − 𝑟 − 𝑓 )2𝜂2𝜇2,

M = 4(𝑛 − 𝑟 )𝜂𝜇𝜖
(
2(𝑓 + 𝑟 ) + (𝑛 − 𝑟 − 𝑓 )2𝜂𝜇

)
Γ

+ 4(𝑛 − 𝑟 )2 (𝑛 − 𝑟 − 𝑓 )2𝜂2𝜇2𝜖2

+ 2(𝑓 + 𝑟 )𝜂𝜎Γ + (𝑛 − 𝑟 − 𝑓 )2𝜂2𝜎2 .

(21)

Note that we also need 𝑛 ≥ 2𝑓 + 3𝑟/2 to guarantee that 𝜌 ≥ 0.

4.1 Special cases of resilient distributed
stochastic optimization

Similar to what we have in Section 3, the stochastic version of

resilient optimization also has several meaningful special cases.

When 𝑓 = 𝑟 = 0, the problem degenerates to the synchronous

distributed stochastic optimization with no faulty agents in the

system. The problem has also been solved by various methods

without redundancy, including D-SGD with convexity assumptions

which is commonly used in machine learning [33].

4.1.1 Stochastic Byzantine optimization. When 𝑟 = 0, the problem

becomes the Byzantine fault-tolerant problem. CGE gradient filter

(10) degenerates to averaging (12). Theorem 2 holds with (𝑓 , 0; 𝜖)-
redundancy and the same parameters as in (21), substituting with

𝑟 = 0.

4.1.2 Stochastic asynchronous optimization. When 𝑓 = 0, our prob-

lem degenerates to the asynchronous problem. Without faulty

agents, the goal becomes (1). We also have H = [𝑛]. Note that

when 𝑓 = 0, the gradient filter CGE degenerates to the GAR (12),

i.e., plain summation of received stochastic gradients. Theorem 2

holds with (0, 𝑟 ; 𝜖)-redundancy and the following parameters:

𝛼 = 1 − 𝑟

𝑛
· 𝜇
𝛾
, 𝜂 =

2𝑛𝛾𝛼

(𝑛 − 𝑟 )2𝜇2
,

𝜌 = 1 − 2(𝑛𝛾 − 𝑟 𝜇)𝜂 + (𝑛 − 𝑟 )2𝜂2𝜇2,

M = 4𝑛𝜂𝜇𝜖

(
𝑟 + (𝑛 − 𝑟 )2𝜂𝜇

)
Γ

+ 4𝑛2 (𝑛 − 𝑟 )2𝜂2𝜇2𝜖2 + (𝑛 − 𝑟 )2𝜂2𝜎2 .

(22)

Note that the requirement of 𝑛 ≥ 2𝑓 + 3𝑟/2 is not needed here. We

can obtain the result for this case by substituting 𝑓 = 0 in (21) as

well. However, this boundM in (22) is better than (21) with 𝑓 = 0.

4.2 Discussion
The results provided above indicate that with (𝑓 , 𝑟 ; 𝜖)-redundancy,
there exist algorithms to approximate the true solution to (1) or (2)

with D-SGD, where linear convergence is achievable, and the error

range of that approximation is, in expectation, proportional to 𝜖

and 𝜎 . Specifically, in (20) when 𝑡 → ∞,

lim

𝑡→∞
E𝑡



𝑥𝑡+1 − 𝑥H


2 ≤ 1

1 − 𝜌
M, (23)

whereM changes monotonically as 𝜖 and 𝜎 .

Note that Gupta et al. [18] showed a special case of the Byzantine

fault-tolerant problem with redundancy, where all agents have the

same data distribution. Our results can be applied to a broader

range of problems, including heterogeneous problems like federated
learning [27].
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5 EMPIRICAL STUDIES
In this section, we empirically show the effectiveness of our scheme

in Algorithm 1 on some numerical examples and benchmark dis-

tributed machine learning tasks.

5.1 Numerical examples
We present a group of simulation results applying our algorithm

framework to the problems of distributed linear regression. Specifi-
cally, we study behavior of Algorithm 1 according to our theoretical

results in Section 3, including the special cases.

Consider a synchronous server-based system, where 𝑛 = 10

and 𝑑 = 2. Each agent 𝑖 ∈ {1, ..., 𝑛} has a data point represented
by a triplet (𝐴𝑖 , 𝐵𝑖 , 𝑁𝑖 ) where 𝐴𝑖 is a 𝑑-dimensional row vector

with 𝑑 = 2, 𝐵𝑖 ∈ R is a response, and 𝑁𝑖 ∈ R is a noise value.

Specifically, for all 𝑖 ∈ {1, ..., 𝑛}, 𝑛 = 10, 𝐵𝑖 = 𝐴𝑖𝑥
∗+𝑁𝑖 where 𝑥∗ =(

1, 1
)𝑇
. The collective data is represented by a triplet of matrices

(𝐴, 𝐵, 𝑁 ) where the 𝑖-th row of 𝐴, 𝐵, and 𝑁 are equal to 𝐴𝑖 , 𝐵𝑖 and

𝑁𝑖 , respectively. Each agent 𝑖 has a quadratic cost function defined

to be 𝑄𝑖 (𝑥) = (𝐵𝑖 −𝐴𝑖𝑥)2,∀𝑥 ∈ R2.
In this group of experiments, we choose 𝑓 = 0, 1, 2 and 𝑟 = 0, 1, 2,

with various combinations. In each execution, we always designate

the first 𝑓 agents to be Byzantine faulty (labeled 1 through 𝑓 ).

Stragglers are actual stragglers in each iteration whose gradients

are the last 𝑟 ones received by the server. It can be verified first

that the agents’ cost functions satisfy (𝑓 , 𝑟 ; 𝜖)-redundancy property.
The values of 𝜖 with different 𝑓 and 𝑟 are presented in Figure 1. We

can see that larger the values of 𝑓 and 𝑟 , larger the value of 𝜖 , and

less accurate the algorithm can we expect. We can also compute the

values of the coefficients accordingly: 𝜇 = 2; 𝛾 = 0.788, 0.588, 0.439

when 𝑓 = 0, 1, 2, respectively.

We use the following parameters implementing the algorithm.

In update rule (3), we use step size 𝜂𝑡 = 1.5/(𝑡 + 1) for iteration 𝑡 =
0, 1, ..., which satisfies

∑∞
𝑡=0 𝜂𝑡 = ∞ and

∑∞
𝑡=0 𝜂

2

𝑡 < ∞. We assume

the convex compact W ⊂ R𝑑 to be a 2-dimensional hypercube

[−1000, 1000]2. Note that 𝑥H ∈ W. In all simulations presented,

the initial estimate 𝑥0 = (0, 0)𝑇 . In every execution, we observe

that the iterative estimates produced by the algorithm practically

converge after 400 iterations. Thus, to measure the approximate

result outputted by the algorithm, we use 𝑥out = 𝑥500.

Two types of faulty behaviors are simulated: (i) gradient-reverse:
each faulty agent reverses its true gradient. Suppose the correct

gradient of a faulty agent 𝑖 at iteration 𝑡 is 𝑠𝑡
𝑖
, the agent 𝑖 sends the

incorrect gradient 𝑔𝑡
𝑖
= −𝑠𝑡

𝑖
to the server. (ii) random: the faulty

agent sends a randomly chosen vector in R𝑑 . In our experiments,

the faulty agent in each iteration chooses i.i.d. Gaussian random

vector with mean 0 and a isotropic covariance matrix with standard

deviation of 200.

The outputs for with different values of 𝑓 and 𝑟 are presented

in Table 2 alongside with plain gradient descent output (𝑓 = 𝑟 = 0)

for comparison. Note that dist

(
𝑥H, 𝑥out

)
=



𝑥H − 𝑥out



. In all

executions, dist

(
𝑥H, 𝑥out

)
< D∗

as indicated by Theorem 1. The

values of D∗
are listed below.

𝑟 = 0 𝑟 = 1 𝑟 = 2

𝑓 = 0 0 0.207 0.385

𝑓 = 1 0.369 0.670 0.957

𝑓 = 2 1.251 1.748 2.467

We also plot the processes of Algorithm 1 solving the numerical

examples of some of these experiments, namely the cases when

𝑓 = 1 and 2, in Figure 2, with details of the first 150 iterations of

each executions. The process when 𝑓 = 𝑟 = 0, i.e., the synchronous

fault-free case is also presented for comparison purpose. Theses

plots show that in order to be resilient against Byzantine agents and

stragglers, the convergence speed is slightly slowed down and there

exists a gap between the algorithm’s output and the true solution.

5.2 Machine learning experiments
Now we examine some more complex optimization problems: re-

silient distributed machine learning with deep neural networks.

Here, we use stochastic version of our Algorithm 1, validating the-

oretical results in Section 4. It is worth noting that even though the

actual values of redundancy parameter 𝜖 are difficult to compute,

through the following results we can still see that the said redun-

dancy property exists in real-world scenarios and it supports our

algorithm to achieve its applicability.

We simulate a server-based distributed learning system using

multiple threads, one for the server, the rest for agents, with inter-

thread communications handled by message passing interface. The

simulator is built in Python with PyTorch [40] andMPI4py [13], and

deployed on a virtual machine with 14 vCPUs and 16 GB memory.

The experiments are conducted on three benchmark image-

classification datasets:

• MNIST [6] of monochrome handwritten digits,

• Fashion-MNIST [53] of grayscale images of clothes, and

• KMNIST [12] of monochrome Japanese Hiragana characters.

Each of the above datasets comprises of 60,000 training and 10,000

testing data points in 10 non-overlapping classes. For each dataset,

we train a benchmark neural network LeNet [31] with 431,080

learnable parameters. Data points are divided among agents such

that each agent gets 2 out of 10 classes, and each class appears in 4

agents; D𝑖 for each agent 𝑖 is unique.

In each of our experiments, we simulate a distributed system of

𝑛 = 20 agents with 𝑓 = 3 and different values of 𝑟 = 0, 1, 3, 5, 10.

Note that when 𝑟 = 0, the problem becomes synchronous Byzan-

tine fault-tolerant learning. In each execution, we always designate

the first 𝑓 agents to be Byzantine faulty. Stragglers are agents in

each iteration whose gradients are the last 𝑟 ones received by the

server. We also compare these results with the fault-free synchro-

nous learning (𝑓 = 𝑟 = 0). We choose batch size 𝑏 = 128 for D-SGD,

and fixed step size 𝜂 = 0.01. Performance of algorithms is measured

by model accuracy at each step. We also document the cumulative

communication time of each setting. Communication time of itera-

tion 𝑡 is the time from the server’s sending out of 𝑥𝑡 to its receiving

of 𝑛 − 𝑟 gradients. Experiments of each setting are run 4 times with

different random seeds
2
, and the averaged performance is reported.

The results are shown in Figure 3. We show the first 1,000 iterations

as there is a clear trend of converging by the end of 1,000 iterations

for both tasks in all four settings.

2
Randomnesses exist in drawing of data points and stragglers in each iteration of each

execution.
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Table 2: Outputs of Algorithm 1 when solving distributed linear regression in Section 5.1. GAR in use: summing 𝑛 − 𝑟 gradients
when 𝑓 = 0, and CGE gradient filter when 𝑓 = 1, 2.

𝑟 = 0 𝑟 = 1 𝑟 = 2 𝑥H

𝑓 = 0
𝑥out

(
1.0117, 0.9883

)𝑇 (
1.0152, 0.9891

)𝑇 (
1.0311, 0.9872

)𝑇 (
1.0117, 0.9883

)𝑇
dist (𝑥H , 𝑥out ) ∼ 0 3.66 × 10

−3
1.95 × 10

−2

𝑓 = 1 𝑥out
(
1.0460, 0.9883

)𝑇 (
1.0363, 0.9994

)𝑇 (
1.0346, 0.9934

)𝑇 (
1.0460, 0.9883

)𝑇grad-rev dist (𝑥H , 𝑥out ) 1.48 × 10
−5

1.47 × 10
−2

1.24 × 10
−2

𝑓 = 1 𝑥out
(
1.0459, 0.9883

)𝑇 (
1.0466, 0.9846

)𝑇 (
1.0403, 0.9923

)𝑇
random dist (𝑥H , 𝑥out ) 5.42 × 10

−5
3.71 × 10

−3
6.93 × 10

−3

𝑓 = 2 𝑥out
(
1.0067, 0.9621

)𝑇 (
1.0138, 0.9789

)𝑇 (
0.9891, 1.0090

)𝑇 (
1.0445, 0.9876

)𝑇grad-rev dist (𝑥H , 𝑥out ) 4.56 × 10
−2

3.19 × 10
−2

5.94 × 10
−2

𝑓 = 2 𝑥out
(
1.0444, 0.9876

)𝑇 (
1.0376, 0.9961

)𝑇 (
1.0296, 1.0030

)𝑇
random dist (𝑥H , 𝑥out ) 6.00 × 10

−5
1.10 × 10

−2
2.14 × 10

−2
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Figure 2: Changes in aggregate cost
∑
𝑖∈H 𝑄𝑖 (𝑥𝑡 ), and dist

(
𝑥𝑡 , 𝑥H

)
, versus the number of iterations with Algorithm 1 solving the

numerical example.

For Byzantine agents, we evaluate two types of faults: reverse-
gradient where faulty agents reverse the direction of its true gra-

dients, and label-flipping where faulty agents label data points of

class 𝑖 as class 9 − 𝑖 .

As is shown in the first row of Figure 3, the learnedmodel reaches

comparable accuracy to the one learned by synchronous algorithm

at the same iteration; there is a gap between them and the fault-free

case, echoing the error bound M. In the second row of Figure 3, we

see that by dropping out 𝑟 stragglers, the communication time is

gradually reduced when increasing the value of 𝑟 .

5.3 Algorithm 1 for practical use
It is worth noting that 𝑓 and 𝑟 as parameters of Algorithm 1 bear

different meanings as 𝑓 and 𝑟 in the (𝑓 , 𝑟 ; 𝜖)-redundancy property.

In the redundancy property, 𝑓 and 𝑟 together with 𝜖 describe how

redundant the group of cost functions is. For the algorithm, 𝑓 and 𝑟

are hyperparameters set by users and indicate the numbers of faulty

agents and stragglers we intend to tolerate; these two values are

not necessarily equal to the actual numbers in the system, which

we may never know. Still, it is possible to estimate the value of 𝜖 ,

and based on the theorems in Section 3 and 4, to estimate how close

the output can be expected to be to the true solution.

Like other hyper-parameters in optimization problems, there is

no golden standard in choosing the values of 𝑓 and 𝑟 . It would be

better that 𝑓 and 𝑟 are close to the real numbers of faulty agents and

stragglers in the system, which can be estimated by, for example,

previous logs and statistics of the distributed system in use, to see

how often are there failure of agents or how long of waiting can be

qualified as stragglers.

Another interesting observation is that the algorithm does not

require the Byzantine agents or stragglers to be “fixed”. In practice,

it might be more common that the stragglers change from time to

time during the training process, while malicious agents remains

the same. Nonetheless, the gradient-based nature of our algorithm

allows both of them to be changing; as long as the total number of

them are bounded by 𝑓 and 𝑟 , the algorithm remains valid.

6 SUMMARY
We studied the impact of (𝑓 , 𝑟 ; 𝜖)-redundancy in cost functions on

resilient distributed optimization and machine learning. Specifi-

cally, we presented an algorithm for resilient distributed optimiza-

tion and learning, and analyzed its convergence when agents’ cost

functions have (𝑓 , 𝑟 ; 𝜖)-redundancy – a generic characterization

of redundancy in cost functions. We examined the resilient op-

timization and learning problem space. We showed that, under

(𝑓 , 𝑟 ; 𝜖)-redundancy, Algorithm 1 with DGD achieves (𝑓 , 𝑟 ;O(𝜖))-
resilience for optimization, and Algorithm 1 with D-SGD can solve

resilient distributed stochastic optimization problems with error

margins proportional to 𝜖 . We presented empirical results showing

efficacy of Algorithm 1 solving resilient distributed linear regression
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Figure 3: Results for resilient distributed learning with 𝑛 = 20 and 𝑓 = 3 using Algorithm 1 with D-SGD and CGE gradient filter.
Datasets: (a)(d) Fashion-MNIST, (b)(e) MNIST, (c)(f) KMNIST. Byzantine faults: (a-c) reverse-gradient, (d-f) label-flipping. Solid
line for average; shade for standard deviation. Communication time for fault-free synchronous cases is ommitted.

problems and resilient distributed learning tasks. Possible future

work includes showing necessity of (𝑓 , 𝑟 ; 𝜖)-redundancy in solving

RDO problems, analyzing the impact of redundancy in decentral-

ized network, verifying our findings on larger, more complicated

tasks, and so on.

Discussion on limitations Note that our results in this paper

are proved under strongly-convex assumptions. One may argue

that such assumptions are too strong to be realistic. However, pre-

vious research has pointed out that although not a global property,

cost functions of many machine learning problems are strongly-

convex in the neighborhood of local minimizers [8]. Also, there is a

research showing that the results on non-convex cost functions can

be derived from those on strongly-convex cost functions [2], and

therefore our results can be applied to a broader range of real-world

problems. Our empirical results showing efficacy of our algorithm

also concur with this argument.

It is also worth noting that the approximation bounds in op-

timization problems are linearly associated with the number of

agents 𝑛, and the error margins in learning problems are related

to Γ, the size of W. These bounds can be loose when 𝑛 or Γ is

large. We do note that in practice W can be arbitrary, for example,

a neighborhood of local minimizers mentioned above, making Γ
acceptably small. The value of 𝜖 can also be small in practice, as

indicated by results in Section 5.
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