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Abstract—This paper considers the Byzantine fault-tolerance
problem in distributed stochastic gradient descent (D-SGD)
method – a popular algorithm for distributed multi-agent ma-
chine learning. In this problem, each agent samples data points
independently from a certain data-generating distribution. In the
fault-free case, the D-SGD method allows all the agents to learn a
mathematical model best fitting the data collectively sampled by
all agents. We consider the case when a fraction of agents may be
Byzantine faulty. Such faulty agents may not follow a prescribed
algorithm correctly, and may render traditional D-SGD method
ineffective by sharing arbitrary incorrect stochastic gradients.
We propose a norm-based gradient-filter, named comparative
gradient elimination (CGE), that robustifies the D-SGD method
against Byzantine agents. We show that the CGE gradient-
filter guarantees fault-tolerance against a bounded fraction of
Byzantine agents under standard stochastic assumptions, and
is computationally simpler compared to many existing gradient-
filters such as multi-KRUM, geometric median-of-means, and the
spectral filters. We empirically show, by simulating distributed
learning on neural networks, that the fault-tolerance of CGE
is comparable to that of existing gradient-filters. We also em-
pirically show that exponential averaging of stochastic gradients
improves the fault-tolerance of a generic gradient-filter.

I. INTRODUCTION

The problem of distributed multi-agent learning or federated
learning has gained significant attention in recent years [8],
[15], [29], [33]. In this problem, there are multiple machines
or agents in the system each sampling data points locally and
independently. The goal is to design distributed algorithms that
allow the agents to compute or learn a common mathematical
model that optimally fits the data points collectively sampled
by all the agents. Most prior works in distributed learning con-
sider a fault-free setting wherein all the agents are free from
faults and follow a prescribed algorithm honestly. However, in
practical distributed systems, some agents may be faulty [1],
[5], [11], [13], [17], [31], [32].

We consider a system with n agents where up to f
agents are Byzantine faulty. The identity of the Byzantine
agents is a priori unknown. Byzantine agents may collude
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and share arbitrary incorrect information with other non-
faulty agents [21]. For instance, Byzantine agents may share
information corresponding to poisonous data points; see [30]
and references therein. In the presence of such faulty agents, a
reasonable goal is to design a distributed algorithm that allows
all the non-faulty agents to learn a mathematical model that
optimally fits the data points only sampled by the non-faulty
agents. A standard formulation of fault-tolerance in distributed
learning is presented below.

Fault-tolerance in distributed learning: Each non-faulty
agent samples data points independently and identically from
a true data-generating distribution D over the m-dimensional
real vector space Rm. The non-faulty agents a priori fix a
learning model Π, e.g., a neural network [7], characterized
by d real-valued parameters compactly denoted by a vector
w ∈ Rd. For a given parameter vector w, each data point
z ∈ Rm incurs a loss defined by a real-valued loss function ` :
(w, z) 7→ R. We define the non-faulty expected loss function:

Q(w) = E
z∼D

`(w, z), ∀w ∈ Rd. (1)

The goal of a Byzantine fault-tolerant distributed learning
algorithm is to allow the non-faulty agents to compute an
optimal learning parameter w∗ that minimizes Q(w), despite
the presence of Byzantine faulty agents.

System architecture: We consider a synchronous server-
based architecture shown in Fig. 1. The server is assumed
trustworthy, but up to f agents may be Byzantine faulty. The
trusted server helps solve the distributed learning problem in
coordination with the agents.

Fig. 1: The system architecture.



Fault-tolerance in the distributed stochastic gradient
descent (D-SGD) method: We propose a fault-tolerance
mechanism that confers fault-tolerance to the D-SGD method
– a standard distributed machine learning algorithm [7]. The
D-SGD method is an iterative algorithm wherein the server
maintains an estimate of an optimal learning parameter, which
is updated iteratively using stochastic gradients computed by
the different agents using i.i.d. data points sampled from D,
as shown in Figure 1. In the fault-free setting, the D-SGD
method converges to an optimal learning parameter, if the
stochastic gradients have bounded variances [7]. However,
the traditional D-SGD method is rendered ineffective in the
presence of Byzantine faulty agents that may send arbitrary
incorrect stochastic gradients to the server [5], [11], [17].

Our proposed fault-tolerance mechanism relies on a norm-
based gradient-filter, named comparative gradient elimination
(CGE), that mitigates the detrimental impact of arbitrary
incorrect stochastic gradients to the correctness of the D-
SGD method. In our CGE gradient-filter, in each iteration, the
server eliminates f (out of n) received stochastic gradients
with f largest Euclidean norms. The current estimate in each
iteration is updated using the average of the n− f remaining
stochastic gradients. Details of our algorithm, and its fault-
tolerance property are presented later in Section II. Please refer
Figure 1 for an illustration.

In contrast to the other previously introduced applications
of norm-based gradient elimination solving other unrelated
problems, e.g., [25], [28], our CGE gradient-filter employs
an adaptive threshold. Specifically, in our case, the threshold
for eliminating stochastic gradients is not a constant but varies
depending upon the norms of the non-faulty agents’ stochastic
gradients. This difference is critical for the fault-tolerance
property of the CGE gradient-filter.

We also incorporate an exponential averaging scheme where
the server uses exponentially weighted averages of the agents’
stochastic gradients, instead of their instantaneous values in
the D-SGD method. We empirically show in Section III-B that
exponential averaging can notably improve the performance of
a fault-tolerance mechanism such as the CGE gradient-filter.

A. Summary of our contributions

We summarize below our main contributions and results.
• A new algorithm and its fault-tolerance property:

We show that our algorithm, D-SGD method with
CGE gradient-filter, guarantees Byzantine fault-tolerance
under standard assumptions [7]. Our result is summarized
below, and presented formally in Section II-A. Notation
Pr denotes probability.

Theorem (Informal). Suppose that the variance σ2 of
the non-faulty stochastic gradients is bounded, and the
loss function Q(w) is λ-strongly convex with µ-Lipschitz
continuous gradients. Let w∗ denote a minimum of Q(w)
and wt denote an estimate of w∗ at the server in the t-th
iteration of our algorithm. If f/n is less than λ/(2λ+µ)
then ∃ρ ∈ (0, 1) and M ∈ Θ (σ) such that, ∀ε > 0,

lim
t→∞

Pr
(∥∥wt − w∗∥∥2 ≤ ε) ≥ 1− 1

ε

(
M2

1− ρ

)
.

Our algorithm is also effective in the heterogeneous data
setting, where different agents may have different data
distribution, provided that the agents’ respective loss
functions have some minimal redundancy, see [18], [19],
[23]. For simplicity, we only consider the homogeneous
data setting in this paper.

• Exponential averaging for improved fault-tolerance:
We empirically show (for the first time) the efficacy of
exponential averaging of stochastic gradients for improv-
ing Byzantine fault-tolerance of a gradient-filter.

• Empirical results: We empirically show in Section III
the efficacy of our algorithm for distributed learning on
neural networks. We conduct experiments on a bench-
mark classification task, MNIST [6], under varied fault
types and fraction of faulty agents. We show that the
fault-tolerance of CGE gradient-filter is comparable to the
existing gradient-filters, namely multi-KRUM, geometric
median-of-means, and coordinate-wise trimmed mean.

B. Comparisons with Related Work

We present below key comparisons between CGE and other
existing gradient-filters for fault-tolerance in D-SGD.

• Computational simplicity: The computational time
complexity of CGE gradient-filter compares favourably to
prominent gradient-filters, namely multi-KRUM [5], geo-
metric median-of-means [11], and the spectral gradient-
filters [10], [13], [14], [27]. In particular, the complexity
of CGE gradient-filter is O(n(log n+d)), in comparison
to O(n(n+ d)) of multi-KRUM and geometric median-
of-means, and O(ndmin{n, d}) of the spectral gradient-
filters. We empirically show that despite its computational
simplicity, the fault-tolerance of the CGE gradient-filter
is comparable to these aforementioned gradient-filters.

• Standard stochastic assumptions: The coordinate-wise
trimmed mean filter [35], the norm-based filter [16],
and the signSGD filter [3] have similar time complexity
as CGE. However, the known fault-tolerance guaran-
tees of these gradient-filters rely on strong assumptions
about the non-faulty stochastic gradients that are uncom-
mon in many learning problems [7]. In particular, [16],
[35] assume non-faulty stochastic gradients to be sub-
exponential random variables, and [3] assumes non-faulty
stochastic gradients to have a unimodal symmetric prob-
ability distributions. We, however, only assume the non-
faulty stochastic gradients to have bounded variances –
an assumption that is common in all the prior works, and
is required for the convergence of the D-SGD method
even in the fault-free case [6], [7].

Other related works [22], [34] consider the problem of
Byzantine fault-tolerance in distributed learning using the
consensus optimization methods [8], [24].



For obtaining the formal fault-tolerance property of our
algorithm we assume the expected loss function Q(w) to
be strongly convex, unlike some of the aforementioned prior
works. However, in learning problems when Q(w) is convex,
e.g., support vector machine and logistic regression, it is
often regularized to a strongly convex function to mitigate
overfitting [7]. In many learning problems even if Q(w) is
not globally strongly convex, it is so in a neighborhood of
local minimizers, thus our result can show the convergence of
the D-SGD method with CGE gradient-filter in such regions
of the search space.

II. PROPOSED ALGORITHM

In this section, we present our CGE gradient-filter for
tolerating Byzantine faulty agents in distributed learning using
the D-SGD method. The description of the algorithm below
is followed by its fault-tolerance guarantee in Section II-A.

Algorithm 1: D-SGD with CGE Gradient-filter
The server chooses the initial estimate w0 arbitrarily
from Rd. Steps executed in each iteration t:

� Step S1: The server broadcasts the current estimate
wt to all the agents.

Each non-faulty agent i sends to the server a stochastic
gradient of the global expected loss function Q(w) at
wt, i.e., a noisy estimator of the gradient ∇Q(wt). A
faulty agent may send an incorrect arbitrary vector
for its stochastic gradient.

Let gti denote the gradient received by the server from
agent i. If no gradient is from some agent i, i must
be faulty (since the system is assumed synchronous),
and the server eliminates i from the system.

� Step S2 (CGE gradient-filter): The server sorts
the n received gradients as follows:∥∥gti1∥∥ ≤ . . . ≤ ∥∥∥gtin−f

∥∥∥ ≤ ∥∥∥gtin−f+1

∥∥∥ ≤ . . . ≤ ∥∥gtin∥∥ .
(2)

where gtij , with j-th smallest norm, is from agent ij .
The server updates its current estimate using only
n− f stochastic gradients with smallest n− f norms:

wt+1 = wt − ηt
n−f∑
j=1

gtij (3)

where ηt is the step-size of iteration t.

Similar to the traditional D-SGD, the server maintains an
estimate of an optimal learning parameter which is updated
in each iteration using Algorithm 1. For each iteration t ∈
{0, 1, . . .}, let wt denote the estimate of the server. In Step
S1, the server obtains from the agents their locally computed

stochastic gradients of the expected loss function Q(w) at
wt. There are multiple methods for computing stochastic
gradients [7, Section 5], one of which is described below.
Note that a Byzantine faulty agent may send an arbitrary
vector. In Step S2, to mitigate the detrimental impact of
incorrect stochastic gradients, the algorithm uses a filter to
“robustify” the gradient aggregation used for computing the
updated estimate wt+1. In particular, the server eliminates the
stochastic gradients with the largest f Euclidean norms, and
uses the aggregate of the remaining n−f stochastic gradients
with n − f smallest Euclidean norms to compute wt+1, as
shown in Equation (3) below. We refer to the method used in
Step S2 for elimination the largest f gradients as Comparative
Gradient Elimination (CGE) gradient-filter, since the norms of
the gradients are compared together to eliminate (or filter out)
the gradients with the largest f norms.

To compute a stochastic gradient in an iteration t, a non-
faulty agent i samples k i.i.d. data points zti1 , . . . , z

t
ik

from
the distribution D. Then, for each non-faulty agent i,

gti =
1

k

k∑
j=1

∇`(wt, ztij ). (4)

k is referred as the data batch-size or simply batch-size.
Complexity: Note that computing the Euclidean norms of

n d-dimensional vector takes O(nd) time, and sorting of n
values takes O(n log n) time. Thus, the time complexity of
the CGE gradient-filter is O(n(d+ log n)) in each iteration.

A. Fault-Tolerance Property

In this section, we present a formal convergence result for
our algorithm under standard assumptions that hold true in
most learning problems [7].

For each non-faulty agent i, let

zti = {zti1 , . . . , z
t
ik
} (5)

denote the collection of k i.i.d. data points sampled by the
agent i in iteration t. Now, for each agent i and iteration t we
define a random variable

ζti =

{
zti , agent i is non-faulty
gti , agent i is faulty (6)

Recall that gti may be an arbitrary d-dimensional random
variable for each Byzantine faulty agent i. For each iteration
t, let

ζt = {ζti , i = 1, . . . , n}, (7)

and let Et denote the expectation of a function of the collective
random variables ζ0, . . . , ζt, given the initial estimate w0.
Specifically,

Et(·) = Eζ0,..., ζt(·), ∀t ≥ 0. (8)

We make the following assumptions that are satisfies in
many machine learning problems [7], [35].



Assumption 1 (Bounded variance). Assume that there exists
a finite real value σ such that for all non-faulty agent i,

Eζti
∥∥∥gti − Eζti

(
gti
)∥∥∥2 ≤ σ2, ∀t.

Assumption 2 (Lipschitz smoothness). Assume that there
exists a finite positive real value µ such that

‖∇Q(w)−∇Q(w′)‖ ≤ µ ‖w − w′‖ , ∀w, w′ ∈ Rd.

Assumption 3 (Strong convexity). Assume that there exists a
finite positive real value λ such that for all w, w′ ∈ Rd,

〈w − w′, ∇Q(w)−∇Q(w′)〉 ≥ λ ‖w − w′‖2 .

We define a fault-tolerance margin

α =
λ

2λ+ µ
− f

n
(9)

that determines the maximum fraction of faulty agents f/n
tolerable by our algorithm. Lastly, we define an upper bound
for the step-size ηt in (3),

η =

(
2(2λ+ µ)n

n2 + (n− f)2µ2

)
α. (10)

Theorem 1 below presents a key fault-tolerance property
of our algorithm, i.e., Algorithm 1. Recall that w∗ denotes a
minimum of the global expected loss function Q(w), i.e.,

w∗ ∈ arg min
w∈Rd

Q(w).

Theorem 1. Consider Algorithm 1. Suppose that the Assump-
tions 1, 2, and 3 hold true. If the fault-tolerance margin α
is positive, and in the update law (3) the step-size ηt = η ∈
(0, η) for all t then

ρ = 1−
(
n2 + (n− f)2µ2

)
η (η − η) ∈ (0, 1), (11)

and, for all t ≥ 1,

Et−1
∥∥wt − w∗∥∥2 ≤ ρt ∥∥w0 − w∗

∥∥2 +

(
1− ρt

1− ρ

)
M2 (12)

where

M2 =

(
f2
(
1 +
√
n− f − 1

)2
n2

+ η2(n− f)2

)
σ2. (13)

According to Theorem 1, if α > 0, i.e.,

f

n
<

λ

2λ+ µ
, (14)

then for small enough step-size, in (3), our algorithm con-
verges linearly to a neighborhood of a minimum of the global
expected loss function (1). As ρ < 1, (12) implies that

lim
t→∞

Et−1
∥∥wt − w∗∥∥2 ≤ M2

1− ρ
.

Upon using the Markov’s inequality, we obtain the probabilis-
tic guarantee on training accuracy stated in Section I-A.

III. EXPERIMENTS

In this section, we present our key empirical results on
fault-tolerance in distributed learning on neural networks
using the D-SGD method with different gradient-filters. The
fault-tolerance of different gradient-filters is evaluated through
multiple experiments with varied fractions of faulty agents
f/n, different types of faults and the data batch-size k.

We use multiple threads to simulate the distributed server-
based system (ref. Fig. 1), one for the server and others for
agents. The inter-thread communication is handled through
message passing interface. The simulator is built in Python
using PyTorch [26] and MPI4py [12], deployed on a Google
Cloud Platform cluster with 64 vCPUs and 100 GB memory.

We experiment on the dataset MNIST [6], an image-
classification dataset of handwritten digits comprising 60, 000
training and 10, 000 testing samples. We use a state-of-the-art
neural network LeNet with of 431, 080 learning parameters.
Thus, the value of dimension d = 431, 080.

We simulate a distributed system with n = 40 agents,
among which f faulty agents are chosen randomly. The server
initiates the D-SGD method by choosing the initial estimate
w0, a d-dimensional vector, by uniform distributions near 0.
The step-size is ηt = 0.01 in every iteration t. To tolerate
faulty agents, the server uses a gradient-filter as shown in Step
S2 of Algorithm 1. We compare the fault-tolerance of our CGE
gradient-filter with the following prominent gradient-filters.
• Geometric median (GeoMed);
• Geometric median-of-means (MoM) [11], with group size
b = 2;

• Coordinate-wise trimmed mean (CWTM) [35];
• Multi-KRUM [5], with m = 5.
Types of Faults: We simulate faulty agents that can exhibit

two different types of faults listed below. The second one sim-
ulates inadvertently faulty agents that exhibit faulty behaviors
due to hardware failures [20].
• Gradient-reverse fault: A faulty agent sends to the

server a vector directed opposite to its correct stochastic
gradient with the same norm. Specifically, if sti denotes
a correct stochastic gradient of faulty agent i in iteration
t then agent i sends to the server a vector gti = −sti.

• Label-flipping fault: A faulty agent sends incorrect
stochastic gradients due to erroneous output labels of
its data points. Specifically, in our experiments with 10
different labels in MNIST, the original label of a data
point y sampled by a faulty agent is changed to ỹ = 9−y.

A. Results and analysis

We now present our experimental results with the above
setup under various settings specified below. We fix the
number of faulty agents f = 8 out of n = 40 total agents,
and the data batch-size k = 64. We do multiple experimental
runs of the D-SGD method with different gradient-filters
under different types of faults. The identity of the faulty
agents is fixed across all the experiments. We also fix the
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Fig. 2: Distributed learning of LeNet for MNIST using the D-SGD method
with different gradient-filters (represented by different colors) to tolerate f =
8 faulty agents in the system. The training losses and the testing accuracies
evaluated by the server after 0 to 500 iterations (or steps) of the different
learning algorithms are plotted in the first and the second rows, respectively.
Different columns contain the results for different types of faults simulated by
the faulty agents. Here, the data batch-size k = 64.

TABLE I: Running time for distributed learning of LeNet for MNIST
using D-SGD method with batch-size k = 64 and the different gradient-
filters in presence of f = 8 faulty agents exhibiting label-flipping type of
fault, corresponding to the training process shown in Fig. 2(b). Total running
time refers to the time for 500 iterations.

Filter Time per iteration (s) Total running time (s)
GeoMed 2.473 1236.5

MoM 1.150 575.1
CWTM 0.903 451.8

Multi-KRUM 2.225 1112.4
CGE 0.573 286.3

random seeds used by agents for sampling data in training
phase, so that across different experiments the same agent
samples the same mini-batch of data for the same iteration.
From our experiments, we observe that other than median-
of-means, the three gradient-filters, including CGE, have
comparable fault-tolerance against the two types of faults
exhibited by the faulty agents. Median-of-means cannot
tolerate gradient-reverse faults, and exhibits a performance
gap between other filters when facing label-flipping faults.
The plots for the losses and accuracies versus the number
of iterations (or steps) are shown in Fig. 2 for the different
experiments. Table I shows the running time for each filter
under label-flipping faults. CGE has significantly smaller
running time while preserving comparable performance.

To evaluate the influence of individual agents’ data batch-
size on the fault-tolerance by CGE gradient-filter, we conduct
experiments with four different batch-sizes: k = 32, 64, 128,
and 256. For these experiments all faulty agents exhibit
label-flipping faults. The average training losses and testing
accuracies between the 475-th and 500-th iterations (or steps)
for different batch-sizes are shown in Fig. 3 where different
colors represent different numbers f of faulty agents. A
larger batch-size results in stochastic gradients with smaller
variances (see (4) in Section II), and thus, as expected from
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Fig. 3: Average training losses and testing accuracies evaluated between 475
to 500 steps of the D-SGD method with CGE gradient-filter for distributed
learning of LeNet in the presence of different number of faulty agents f
(represented by different colors) each exhibiting the gradient-reverse Byzantine
fault, for different data batch-sizes.
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Fig. 4: Average training losses and testing accuracies evaluated between 475
to 500 steps of the D-SGD method with CGE gradient-filter for distributed
learning of LeNet in the presence of varied number of faulty agents f .
Different colors represent different types of faults. The data batch-size k = 64.

our theoretical results in Section II-A, the fault-tolerance
of CGE gradient-filter improves with increased batch-size.
However, an increase in batch-size also increases the costs
for computing the stochastic gradients in each iteration. We
later present a exponential averaging technique that reduces
the variances of the stochastic gradients, and improves the
fault-tolerance of the CGE gradient-filter, without increasing
batch-sizes or the costs for computing stochastic gradients.

Lastly, to evaluate the effect of the fraction of faulty agents
f/n on the fault-tolerance of CGE gradient-filter we conduct
experiments for different values of f . In these experiments
we set batch-size k = 64. The trend of average losses and
accuracies observed between the 475-th to 500-th iterations
(or steps) is shown in Fig. 4. As expected from our theoretical
results in Section II-A, the fault-tolerance of the CGE gradient-
filter deteriorates with increase in the fraction of faulty agents.

B. Exponential averaging of stochastic gradients

We observe from our experiments above, specifically plots
in Fig. 3, that fault-tolerance of CGE gradient-filter improves
with increase in batch-size k. The reason why this happens is
the fact that larger batch-size results in stochastic gradients
with smaller variances σ2, which, owing to our results in
Section II-A, results in improved fault-tolerance. However,
increase in batch-size also increases the cost of computing
stochastic gradients in each iteration. Motivated from this
observation, we propose a more economical technique, ex-
ponential averaging, allowing non-faulty agents to compute
stochastic gradients with reduced variances without increasing



batch-size and their cost for computing stochastic gradients.
Alternately, we may also use other existing variance reduction
techniques from the stochastic optimization literature [7].
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Fig. 5: Average training losses and testing accuracies evaluated between 475
to 500 steps of the D-SGD method with CGE gradient-filter for distributed
learning of LeNet in the presence of different number of faulty agents f
(represented by different colors) when applying exponential averaging of
stochastic gradients for different values of β. no ave. indicates the case when
no averaging is not used. Here, the data batch-size k = 64, and the fault
type is norm-confusing.

For each iteration t and agent i, the server maintains an
exponentially weighted average hti of the stochastic gradients
received from agent i so far. Specifically, for β ∈ [0, 1),

hti = β ht−1i + (1− β) gti . (15)

where gti denotes the stochastic gradient received by the server
from agent i in iteration t. Given a set of n vectors y1, . . . , yn,
let CGEf{y1, . . . , yn} denote the output of our CGE gradient-
filter defined in step S2 of Algorithm 1. For each iteration
t, in step S2 of Algorithm 1 the server updates the current
estimate wt to wt+1 = wt + ηt · CGEf {ht1, . . . , htn}. It
should be noted that the above averaging scheme does not
increase the per iteration computation cost for an individual
agent, unlike the case when we increase the data batch-size.

To evaluate the impact of the above exponential averaging
on the fault-tolerance of CGE gradient-filter, we introduce a
new type of fault designed deliberately against our CGE filter:
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Fig. 6: Distributed learning of LeNet for MNIST using the D-SGD method
with batch-size k = 64 and CGE gradient-filter in the presence of f = 8 and
10 faulty agents exhibiting norm-confusing type of faults. Exponential aver-
aging of stochastic gradients applied with different values of β (represented
using different colors).

TABLE II: Running time for distributed learning of LeNet for MNIST
using D-SGD method with batch-size k = 64 and the different gradient-
filters in presence of f = 8 faulty agents exhibiting norm-confusing type of
fault with or without applying exponential averaging for different values of
β, corresponding to the training process shown in Fig. 6(a). Total running
time refers to the time for 500 iterations.

Filter Time per iteration (s) Total running time (s)
CGE (No ave.) 0.613 306.9
CGE (β = 0.2) 0.733 366.7
CGE (β = 0.4) 0.731 365.5
CGE (β = 0.6) 0.733 366.7
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Fig. 7: Distributed learning of LeNet for MNIST dataset using the D-
SGD method with batch-size k = 64 and different gradient-filters in the
presence of f = 10 faulty agents exhibiting norm-confusing type of faults.
Exponential averaging of stochastic gradients applied with different values of
β (represented using different colors). Filters used here are (a) median-of-
means (MoM), and (b) coordinate-wise trimmed mean (CWTM), the two that
has relatively poor performance without exponential averaging.

Norm-confusing fault: A faulty agent sends to the server
a vector directed opposite to its correct stochastic gradient.
However, different form gradient-reverse fault, the norm of
the vector is scaled to the (f+1)-th largest norm amongst the
stochastic gradients of all the n− f non-faulty agents.

Experiments are conducted on the distributed learning of
LeNet for MNIST with k = 64 and different values of f .
The outcomes are shown in Fig. 5. Smaller training loss can
be achieved with exponential averaging and larger value of β
in the same number of steps. Fig. 6 further shows that even
if there are large number f of faulty agents and plain CGE
converges slowly, exponential averaging can still significantly
improve the performance. As shown in Table II, exponential
averaging does not have a significant impact on running time.

Experiments also show that exponential averaging improves
the fault-tolerance of other gradient-filters. For example, Fig. 7
shows the outcome of the distributed learning task with k =
64 and f = 10, using median-of-means and coordinate-wise
trimmed mean filters. With exponential averaging and larger
value of β, faster convergence can be achieved for both filters.

IV. SUMMARY

In this paper, we have proposed a gradient-filter named com-
parative gradient elimination (CGE) to confer Byzantine fault-
tolerate to distributed learning using the distributed stochastic



gradient descent method. We have shown that our algorithm
tolerates a bounded fraction of Byzantine faulty agents, under
some standard assumptions. We have demonstrated through
experiments the applicability of our algorithm to distributed
learning of neural networks. We have empirically shown
that the fault-tolerance of CGE gradient-filter is comparable
to state-of-the-art gradient-filters, namely multi-KRUM, geo-
metric median-of-means, and coordinate-wise trimmed mean
gradient-filters. Finally, we have also illustrated the effective-
ness of exponential averaging for improving upon the fault-
tolerance of any given gradient-filter in the D-SGD method.
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V. APPENDIX: PROOF OF THEOREM 1

Before we present our proof of the theorem we state below
some basic results that are used later in the proof.

A. Useful Observations and Lemmas

Recall from (7) in Section II-A that for each non-faulty
agent i, and a deterministic real-valued function Ψ,

Eζt Ψ
(
gti
)

= Eζt1,..., ζtn Ψ
(
gti
)
. (16)

Also, from (6), recall that for each non-faulty agent i,

ζti = zti. (17)



For a given the current estimate wt, the stochastic gradient gti
is a function of data points zti sampled by the agent i. As the
non-faulty agents choose their data points independently and
identically from distribution D in each iteration, (17) implies
that for each non-faulty agent i,

Eζt1,..., ζtnΨ
(
gti
)

= Ezt
i
Ψ
(
gti
)
. (18)

Upon substituting from (18) in (16) we obtain that for each
non-faulty agent i,

EζtΨ
(
gti
)

= Ezt
i
Ψ
(
gti
)
. (19)

For an arbitrary non-faulty agent i and t, Eζti (gti) = Ezt
i
(gti).

Upon substituting gti from (4) we obtain that

Eζti
(
gti
)

=

(
1

k

)
Ezt

k∑
j=1

(
∇`(wt, ztij )

)
(20)

where the gradient of loss function `(·, ·) is with respect to
its first argument w. From (5), recall that zt constitutes k data
points that are i.i.d. as per the probability distribution D. Upon
using this fact in (20) we obtain that

Eζti
(
gti
)

=
1

k

k∑
j=1

Eztij∼D
(
∇`(wt, ztij )

)
, ∀t. (21)

Note that

∇Q(w) = Ez∼D (∇`(w, z)) , ∀w ∈ Rd. (22)

Substituting from (22) in (21) we obtain that an arbitrary non-
faulty agent i,

Eζti
(
gti
)

=
1

k

k∑
j=1

(
∇Q(wt)

)
= ∇Q(wt). (23)

Recall, from Assumption 1, that the variance of each non-
faulty agent’s stochastic gradient is bounded by σ2.

Lemma 1. For an arbitrary iteration t, if Assumption 1 holds
true then for each non-faulty agent i,

Eζt
∥∥gti∥∥2 ≤ σ2 +

∥∥∇Q(wt)
∥∥2 .

Proof. Let i be an arbitrary non-faulty agent. Using the
definition of Euclidean norm, note that for each iteration t,∥∥gti − Eζt

(
gti
)∥∥2 =

∥∥gti∥∥2 − 2
〈
gti , Eζt

(
gti
)〉

+
∥∥Eζt (gti)∥∥2 .

(24)

As the expected value of a constant is the constant itself, upon
taking expectations on both sides in (24) we obtain that

Eζt
∥∥gti − Eζt

(
gti
)∥∥2 = Eζt

∥∥gti∥∥2 − ∥∥Eζt (gti)∥∥2 . (25)

Note, from (19), that Eζt (gti) = Ezt
i
(gti), and

Eζt ‖gti − Eζt (gti)‖
2

= Ezt
i

∥∥∥gti − Ezt
i
(gti)

∥∥∥2. Substituting
these in (25) we obtain that

Ezt
i

∥∥∥gti − Ezt
i

(
gti
)∥∥∥2 = Eζt

∥∥gti∥∥2 − ∥∥∥Ezt
i

(
gti
)∥∥∥2 . (26)

Recall from (23) that Ezt
i

(gti) = ∇Q(wt). Substituting this
above we obtain that

Ezt
i

∥∥∥gti − Ezt
i

(
gti
)∥∥∥2 = Eζt

∥∥gti∥∥2 − ∥∥∇Q(wt)
∥∥2 . (27)

As Assumption 1 holds true, Ezt
i

∥∥∥gti − Ezt
i
(gti)

∥∥∥2 ≤ σ2.
Substituting this in (27) proves the lemma.

Let |·| denote the set cardinality. Recall that there are at
least n− f non-faulty agents. We define a set H constituting
of n− f non-faulty agents, i.e., if i ∈ H then agent i is non-
faulty and |H| = n − f . Let B = {1, . . . , n} \ H denote the
remaining f agents, some of which may be non-faulty.

Lemma 2. For each iteration t, let νt denote the non-faulty
agent in H with stochastic gradient gtνt of largest Euclidean
norm, that is, ∥∥gtνt∥∥ ≥ ∥∥gti∥∥ , ∀i ∈ H.

For an arbitrary iteration t, if Assumption 1 holds true then

Eζt
∥∥gtνt∥∥ ≤ σ (1 +

√
n− f − 1

)
+
∥∥∇Q(wt)

∥∥ . (28)

Proof. We begin our proof by reviewing a generic result on the
upper bounds on the expectation of highest order statistic [2],
[4]. For a positive finite integer p, let R1, . . . , Rp be p
independent real-valued random variables. Consider a random
variable Rν = max{R1, . . . , Rp}. Let E(·) denote the mean
value of a random variable. If the mean and the variance of
the random variables R1, . . . , Rp are identically equal to E(R)
and Var(R), respectively, then (see [2])

E(Rν) ≤ E(R) +
√
Var(R) (p− 1). (29)

Consider an arbitrary iteration t. Recall that H comprises
of only non-faulty agents, specifically n−f non-faulty agents.
Thus, from (19) we obtain that, for all i ∈ H,

Eζt
∥∥gti∥∥ = Ezt

i

∥∥gti∥∥ , and (30)

Eζt
(∥∥gti∥∥− Eζt

∥∥gti∥∥)2 = Ezt
i

(∥∥gti∥∥− Ezt
i

∥∥gti∥∥)2 . (31)

Now, recall from the definition of νt and gtνt that
∥∥gtνt∥∥ is a

real-valued random variable such that∥∥gtνt∥∥ = max
{∥∥gti∥∥ , i ∈ H} .

Therefore, substituting from (30) and (31) in (29), we obtain
that for an arbitrary agent i ∈ H,

Eζt
∥∥gtνt∥∥ ≤ Ezt

i

∥∥gti∥∥
+

√
Ezt

i

(
‖gti‖ − Ezt

i
‖gti‖

)2
(n− f − 1). (32)

Owing to Jensen’s inequality [9], for all i ∈ H,

Ezt
i

∥∥gti∥∥ = Ezt
i

√
‖gti‖

2 ≤
√

Ezt
i
‖gti‖

2
. (33)



As Assumption 1 holds true, from Lemma 1 we obtain that

Ezt
i

∥∥gti∥∥2 ≤ σ2 +
∥∥∇Q(wt)

∥∥2 , ∀i ∈ H. (34)

Substituting from (34) in (33) we obtain that

Ezt
i

∥∥gti∥∥ ≤√σ2 + ‖∇Q(wt)‖2 , ∀i ∈ H. (35)

From triangle inequality,
√
σ2 + ‖∇Q(wt)‖2 ≤ σ +

‖∇Q(wt)‖. Substituting this in (35) proves that

Ezt
i

∥∥gti∥∥ ≤ σ +
∥∥∇Q(wt)

∥∥ , ∀i ∈ H. (36)

Now, note that for all i,

Ezt
i

(∥∥gti∥∥− Ezt
i

∥∥gti∥∥)2 = Ezt
i

∥∥gti∥∥2 − (Ezt
i

∥∥gti∥∥)2 . (37)

As the Euclidean norm ‖·‖ is a convex function [9], Jensen’s
inequality implies that

Ezt
i

∥∥gti∥∥ ≥ ∥∥∥Ezt
i

(
gti
)∥∥∥ , ∀i ∈ H. (38)

Recall from (23) that Ezt
i
(gti) = ∇Q(wt) for all i ∈ H. Upon

substituting this in (38) we obtain that

Ezt
i

∥∥gti∥∥ ≥ ∥∥∇Q(wt)
∥∥ , ∀i ∈ H. (39)

Substituting from (39) in (37) we obtain that for all i ∈ H,

Ezt
i

(∥∥gti∥∥− Ezt
i

∥∥gti∥∥)2 ≤ Ezt
i

∥∥gti∥∥2 − ∥∥∇Q(wt)
∥∥2 . (40)

Substituting from (34) in (40) above we obtain that

Ezt
i

(∥∥gti∥∥− Ezt
i

∥∥gti∥∥)2 ≤ σ2 , ∀i ∈ H. (41)

Substituting from (36) and (41) in (32) proves the lemma.

B. Proof of (11) in Theorem 1

In this subsection, we prove (11), i.e.,

ρ = 1−
(
n2 + (n− f)2µ2

)
η (η − η) ∈ (0, 1)

where 0 < η < η. As η (η − η) > 0, obviously, ρ < 1. As
η ∈ (0, η), upon substituting η = η − δ, where δ ∈ (0, η),
in (11) we obtain that

ρ = 1−
(
n2 + (n− f)2µ2

)
(η − δ)δ (42)

= 1 +
(
n2 + (n− f)2µ2

)
δ2 − η

(
n2 + (n− f)2µ2

)
δ = 1

+
(
n2 + (n− f)2µ2

)(
δ − η

2

)2

−
η2
(
n2 + (n− f)2µ2

)
4

.

As
(
δ − η

2

)2
≥ 0, (42) implies that

ρ ≥ 1−
η2
(
n2 + (n− f)2µ2

)
4

. (43)

Substituting η from (10) in (44) we obtain that

ρ ≥ 1− (2λ+ µ)2n2α2

(n2 + (n− f)2µ2)
. (44)

Recall, from (9), that

α =
λn− f(2λ+ µ)

n(2λ+ µ)
. (45)

Substituting from above in (44) we obtain that

ρ ≥ 1− (λn− f(2λ+ µ))
2

(n2 + (n− f)2µ2)
= 1− ((n− f)λ− f(λ+ µ))

2

(n2 + (n− f)2µ2)
.

(46)

As α > 0, (n− f)λ− f(λ+ µ) > 0. Thus,

((n− f)λ− f(λ+ µ))
2 ≤ (n− f)2λ2. (47)

Substituting from (47) in (46) we obtain that

ρ ≥ 1− (n− f)2λ2

(n2 + (n− f)2µ2)
. (48)

Now, consider a minimum point w∗ of the expected loss
function Q(w), and an arbitrary finite w ∈ Rd. Note that
∇Q(w∗) = 0. Thus, Assumption 2 implies that

‖∇Q(w)‖ ≤ µ ‖w − w∗‖ . (49)

Now, under Assumption 3,

〈w − w∗, ∇Q(w)〉 ≥ λ ‖w − w∗‖2 . (50)

Due to Cauchy-Schwartz inequality, 〈w − w∗, ∇Q(w)〉 ≤
‖w − w∗‖ ‖∇Q(w)‖. Thus, (50) implies that

‖Q(w)‖ ≥ λ ‖w − w∗‖ . (51)

From (49) and (51) we obtain that λ ≤ µ. Upon using this
inequality in (48) we obtain that

ρ ≥ 1− (n− f)2µ2

(n2 + (n− f)2µ2)
. (52)

As (n− f)2µ2 < n2 + (n− f)2µ2, (52) implies that ρ > 0.

C. Proof of (12) in Theorem 1

In this section, we prove (12), i.e, for all t ≥ 0,

Et
∥∥wt+1 − w∗

∥∥2 ≤ ρt+1
∥∥w0 − w∗

∥∥2 +

(
1− ρt+1

1− ρ

)
M2.

Consider an arbitrary iteration t. Recall from (2) in Algo-
rithm 1 that the stochastic gradient with the j-th smallest norm,
gtij , is sent by agent ij where j ∈ {1, . . . , n}. Let

gt =
∑

j∈{i1,..., in−f}

gtj (53)

denote the aggregate of the n−f stochastic gradients received
by the server with the n− f smallest Euclidean norms. Upon
substituting ηt = η, and gt from (53), in (3) we obtain that

wt+1 = wt − η gt, ∀t. (54)

Thus, from the definition of Euclidean norm,∥∥wt+1 − w∗
∥∥2 =

∥∥wt − w∗∥∥2 − 2η
〈
wt − w∗, gt

〉
+ η2

∥∥gt∥∥2 .
(55)



Now, owing to the triangle inequality, we obtain that∥∥gt∥∥ ≤ ∑
j∈{i1,..., in−f}

∥∥gtj∥∥ . (56)

Recall thatH denotes a set comprising n−f non-faulty agents,
i.e., |H| = n − f , and {i1, . . . , in−f} represents the agents
that sent stochastic gradients with smallest n− f norm. Thus,∑

j∈{i1,..., in−f}

∥∥gtj∥∥ ≤∑
j∈H

∥∥gtj∥∥ . (57)

Substituting from (57) in (56) we obtain that∥∥gt∥∥ ≤∑
j∈H

∥∥gtj∥∥ . (58)

Thus, ‖gt‖2 ≤ |H|
∑
j∈H

∥∥gtj∥∥2 = (n − f)
∑
j∈H

∥∥gtj∥∥2.
Substituting this in (55) implies that∥∥wt+1 − w∗

∥∥2 ≤ ∥∥wt − w∗∥∥2 − 2η
〈
wt − w∗, gt

〉
+ η2 (n− f)

∑
j∈H

∥∥gtj∥∥2 . (59)

Let Ht = {i1, . . . , in−f} ∩H and Bt = {i1, . . . , in−f} \Ht.
Note that∣∣Ht∣∣ ≥ |H| − f = n− 2f, and

∣∣Bt∣∣ ≤ f. (60)

Therefore, recalling from (53),

gt =
∑
i∈Ht

gti +
∑
j∈Bt

gtj . (61)

Thus,〈
wt − w∗, gt

〉
=
∑
i∈Ht

〈
wt − w∗, gti

〉
+
∑
j∈Bt

〈
wt − w∗, gtj

〉
.

(62)

Owing to Cauchy-Schwartz inequality, ∀j,〈
wt − w∗, gtj

〉
≥ −

∥∥wt − w∗∥∥ ∥∥gtj∥∥ . (63)

As in Lemma 2, let νt denote the non-faulty agent in set H
having stochastic gradient with the largest norm in iteration t.
Thus,

∥∥∥gtin−f

∥∥∥ ≤ ∥∥gtνt∥∥, and∥∥gtj∥∥ ≤ ∥∥gtνt∥∥ , ∀j ∈ Bt. (64)

Substituting from (64) in (63) we obtain that〈
wt − w∗, gtj

〉
≥ −

∥∥wt − w∗∥∥ ∥∥gtνt∥∥ . (65)

Upon substituting from (65) in (62) we obtain that〈
wt − w∗, gt

〉
≥
∑
i∈Ht

〈
wt − w∗, gti

〉
−
∑
j∈Bt

∥∥wt − w∗∥∥ ∥∥gtνt∥∥ .
As |Bt| ≤ f (see (60)), from above we obtain that〈
wt − w∗, gt

〉
≥
∑
i∈Ht

〈
wt − w∗, gti

〉
− f

∥∥wt − w∗∥∥ ∥∥gtνt∥∥ .
(66)

We define, for all t,

φt =
∑
i∈Ht

〈
wt − w∗, gti

〉
− f

∥∥wt − w∗∥∥ ∥∥gtνt∥∥ . (67)

Upon substituting from (67) in (66) we get 〈wt − w∗, gt〉 ≥
φt. Substituting this in (59) we obtain that∥∥wt+1 − w∗

∥∥2 ≤ ∥∥wt − w∗∥∥2 − 2η φt

+ η2 (n− f)
∑
j∈H

∥∥gtj∥∥2 . (68)

Recall the definition of random variable ζt from (7). Taking
the expectation Eζt on both sides in (68), and using the fact
that Eζt ‖wt − w∗‖

2
= ‖wt − w∗‖2, implies that

Eζt
∥∥wt+1 − w∗

∥∥2 ≤ ∥∥wt − w∗∥∥2 − 2η Eζt (φt)

+ η2 (n− f)
∑
j∈H

Eζt
∥∥gtj∥∥2 . (69)

Taking expectation Eζt on both sides in (67) implies that

Eζt (φt) =
∑
i∈Ht

〈
wt − w∗, Eζt

(
gti
)〉

− f
∥∥wt − w∗∥∥ Eζt

∥∥gtνt∥∥ . (70)

As Eζt (gti) = ∇Q(wt) for all i ∈ H, (70) implies that

Eζt (φt) =
∑
i∈Ht

〈
wt − w∗, ∇Q(wt)

〉
− f

∥∥wt − w∗∥∥ Eζt
∥∥gtνt∥∥ . (71)

As w∗ is a minimum of Q(w), ∇Q(w∗) = 0. Thus, Assump-
tion 3, i.e., strong convexity of function Q(w), implies that〈

wt − w∗, ∇Q(wt)
〉
≥ λ

∥∥wt − w∗∥∥2 . (72)

Substituting from (72) in (71) we obtain that

Eζt (φt) ≥
∣∣Ht∣∣ λ ∥∥wt − w∗∥∥2 − f ∥∥wt − w∗∥∥ Eζt

∥∥gtνt∥∥ .
(73)

From Lemma 2, Eζt
∥∥gtνt∥∥ ≤ σ

(
1 +
√
n− f − 1

)
+

‖∇Q(wt)‖. Substituting this in (73), and using the fact that
that |Ht| ≥ n− 2f (see (60)), we obtain that

Eζt (φt) ≥ (nλ− f(2λ+ µ))
∥∥wt − w∗∥∥2

− fσ
(

1 +
√
n− f − 1

)∥∥wt − w∗∥∥ . (74)

Now, owing to Lemma 1, Eζt
∥∥gtj∥∥2 ≤ σ2 + ‖∇Q(wt)‖2 for

all j ∈ H. Recall that |H| = n− f . Thus,∑
j∈H

Eζt
∥∥gtj∥∥2 ≤ |H|(σ2 +

∥∥∇Q(wt)
∥∥2)

= (n− f)
(
σ2 +

∥∥∇Q(wt)
∥∥2) . (75)

As ∇Q(w∗) = 0, Assumption 2 (i.e., Lipschitzness) implies
that ‖∇Q(wt)‖ ≤ µ ‖wt − w∗‖. Thus, (75) implies that∑

j∈H
Eζt

∥∥gtj∥∥2 ≤ (n− f)
(
σ2 + µ2

∥∥wt − w∗∥∥2) . (76)



Finally, substituting from (74) and (76) in (69) implies that

Eζt
∥∥wt+1 − w∗

∥∥2 (77)

≤
(
1− 2η (nλ− f(2λ+ µ)) + η2(n− f)2µ2

) ∥∥wt − w∗∥∥2
+ 2ηfσ

(
1 +

√
n− f − 1

)∥∥wt − w∗∥∥+ η2(n− f)2σ2.

For real values a and b, 2ab ≤ a2 + b2. Thus,

2ηfσ
(

1 +
√
n− f − 1

)∥∥wt − w∗∥∥ ≤ η2n2 ∥∥wt − w∗∥∥2
+

(
f

n

)2

σ2
(

1 +
√
n− f − 1

)2
. (78)

Substituting from (78) in (77) we obtain that

Eζt
∥∥wt+1 − w∗

∥∥2 ≤ {1− 2η (nλ− f(2λ+ µ))}
∥∥wt − w∗∥∥2

+ η2
(
n2 + (n− f)2µ2

) ∥∥wt − w∗∥∥2
+

(
f2
(
1 +
√
n− f − 1

)2
n2

+ η2(n− f)2

)
σ2.

Substituting M2 from (13) above we obtain that

Eζt
∥∥wt+1 − w∗

∥∥2 ≤ (1− 2η (nλ− f(2λ+ µ)))
∥∥wt − w∗∥∥2

+ η2
(
n2 + (n− f)2µ2

) ∥∥wt − w∗∥∥2 + M2. (79)

Substituting α from (9), we obtain that

nλ− f(2λ+ µ) = (2λ+ µ)nα. (80)

Therefore,

2η (nλ− f(2λ+ µ))− η2
(
n2 + (n− f)2µ2

)
= 2η(2λ+ µ)nα− η2

(
n2 + (n− f)2µ2

)
=
(
n2 + (n− f)2µ2

)
η

((
2(2λ+ µ)n

n2 + (n− f)2µ2

)
α− η

)
.

Substituting η from (10) above we obtain that

2η (nλ− f(2λ+ µ))− η2
(
n2 + (n− f)2µ2

)
=
(
n2 + (n− f)2µ2

)
η (η − η) . (81)

Substituting ρ from (11) in (81) we obtain that

2η (nλ− f(2λ+ µ))− η2
(
n2 + (n− f)2µ2

)
= 1− ρ.

(82)

Substituting from (82) in (79) we obtain that

Eζt
∥∥wt+1 − w∗

∥∥2 ≤ ρ ∥∥wt − w∗∥∥2 + M2. (83)

Recall from (8) that E0 = Eζ0 . Thus, the above proves the
theorem for t = 0, i.e.,

E0

∥∥w1 − w∗
∥∥2 ≤ ρ∥∥w0 − w∗

∥∥2 + M2. (84)

Next, we consider the case when t > 0 in (83).

From Section II-A, recall that the wt is a function of random
variable ζt−1 = {ζt−11 , . . . , ζt−1n } given wt−1. By retracing
back to t = 0 we obtain that wt is a function of random
variables ζ0, . . . , ζt−1, given the initial estimate w0. As wt+1

is a function of wt and ζt,
∥∥wt+1 − w∗

∥∥2 is a function of
random variables ζ0, . . . , ζt−1, given the initial estimate w0.
Let, for all t > 0,

Eζt|ζ0,..., ζt−1

∥∥wt+1 − w∗
∥∥2

denote the conditional expectation of
∥∥wt+1 − w∗

∥∥2 given the
random variables ζ0, . . . , ζt−1 and w0. Thus, for t > 0,

Eζt
∥∥wt+1 − w∗

∥∥2 = Eζt|ζ0,..., ζt−1

∥∥wt+1 − w∗
∥∥2 . (85)

Substituting from (85) in (83) we obtain that, given w0,

Eζt|ζ0,..., ζt−1

∥∥wt+1 − w∗
∥∥2 ≤ ρ∥∥wt − w∗∥∥2 + M2. (86)

Now, note that due to Baye’s rule, for all t > 0,

Eζ0,..., ζt
∥∥wt+1 − w∗

∥∥2
= Eζ0,..., ζt−1

(
Eζt|ζ0,..., ζt−1

∥∥wt+1 − w∗
∥∥2) .

Substituting from (86) above implies that, given w0,

Eζ0,..., ζt
∥∥wt+1 − w∗

∥∥2 ≤ Eζ0,..., ζt−1

(
ρ
∥∥wt − w∗∥∥2 + M2

)
= ρEζ0,..., ζt−1

∥∥wt − w∗∥∥2 + M2, ∀t > 0.

Recall from (8) that notation Et represents the joint expec-
tation Eζ0,..., ζt given w0 for all t. Upon substituting this
notation above we obtain that, for all t > 0,

Et
∥∥wt+1 − w∗

∥∥2 ≤ ρEt−1 ∥∥wt − w∗∥∥2 + M2. (87)

Finally, we use induction to show (12), i.e., ∀t ≥ 0,

Et
∥∥wt+1 − w∗

∥∥2 ≤ ρt+1
∥∥w0 − w∗

∥∥2 +

(
1− ρt+1

1− ρ

)
M2.

Recall that (12) trivially holds true for t = 0 due to (84).
Assume that (12) holds true for t = τ − 1 where τ ≥ 2, i.e.,

Eτ−1 ‖wτ − w∗‖2 ≤ ρτ
∥∥w0 − w∗

∥∥2 +

(
1− ρτ

1− ρ

)
M2.

(88)

From (87) we obtain that

Eτ
∥∥wτ+1 − w∗

∥∥2 ≤ ρEτ−1 ‖wτ − w∗‖2 + M2. (89)

Substituting from (88) in (89) above we obtain that

Eτ
∥∥wτ+1 − w∗

∥∥2 ≤ ρτ+1
∥∥w0 − w∗

∥∥2 +

(
1− ρτ+1

1− ρ

)
M2.

The above proves (12) for t = τ . Hence, due to reasoning by
induction, (12) holds true for all t ≥ 0.


